VMworld 2005
virtualize now

las vegas • october 18-20, 2005
PAC485
Managing Datacenter Resources
Using the VirtualCenter
Distributed Resource Scheduler

Carl Waldspurger
Principal Engineer, R&D
This presentation may contain VMware confidential information.

Copyright © 2005 VMware, Inc. All rights reserved. All other marks and names mentioned herein may be trademarks of their respective companies.
Talk Overview

- Context and features
- Managing resources
- Virtual machine placement
- System architecture
- Summary
What Is DRS?

- DRS = Distributed Resource Scheduler
- Automatic virtual machine placement
 - Optimize load balance across hosts
 - Decide if, when, and where to migrate
 - React to dynamic load changes
- Cluster-wide resource management
 - Scalable resource controls
 - Configurable automation levels
 - Integrated UI for all controls
DRS Can Help You…

- Manage variable loads
 - Workloads often dynamic, time-dependent
 - Quickly shift loads in response to demand
- Administer many virtual machines
 - Hierarchical organization
 - Delegated administration
- Move towards utility computing
 - Think more about aggregate resource pools
 - Think less about individual hosts
Where Does DRS Fit In?

- New product
 - Requires VirtualCenter 2 and ESX Server 3
 - Modular plug-in for VirtualCenter
- DRS module
 - Implements algorithms, enforces policies
 - Managed using VirtualCenter UI
- Leverages core technologies
 - VMotion for migrating live VMs across hosts
 - Sophisticated resource management
Key Features

- Virtual machine placement
 - Choose initial host when VM powers on
 - Dynamic rebalancing using VMotion
- Configurable automation levels
 - Manual – recommend initial host and migrations
 - Partial – automatic initial host, recommend migrations
 - Full – automatic initial host and migrations
- Resource pools
 - Flexible grouping, sharing, and isolation
 - Hierarchical organization and delegation
Talk Overview

- Context and features
- Managing resources
- Virtual machine placement
- System architecture
- Summary
Managing Resources

- Basic controls
 - Same as in current products
 - Shares – specify relative importance
 - Min – guaranteed resource availability
 - Max – limit resource consumption

- Resource pools
 - New feature leveraged by DRS
 - Hierarchical management
Basic Control: Shares

- Importance
 - Entitlement directly proportional to shares
 - Analogy: shares of stock in corporation

- Relative units
 - Abstract number, only ratios matter
 - Entitlement depends on total shares issued

- Named values
 - Predefine high, normal, low with 4 : 2 : 1 ratio
 - Defaults to normal
Shares Examples

- Change shares for **virtual machine**
- Dynamic reallocation

- Add **virtual machine**, overcommit resources
- Graceful degradation

- Remove **virtual machine**
- Exploit extra resources
Basic Control: Min

- Guaranteed resources
 - Minimum service level reservation
 - Even when system overcommitted
- Absolute units
 - MHz for cpu, MB for memory
 - Defaults to zero for cpu, memory
- Virtual machine admission control
 - Reserve resources for mins
 - Sum of all VM mins ≤ capacity
 - Prevent power-on if check fails
Min Example

- Total capacity
 - 600 MHz reserved
 - 400 MHz available
- Admission control
 - 2 VMs try to power-on
 - 300 MHz min each
 - Unable to admit both
- VM1 powers on
- VM2 not admitted
Basic Control: Max

- Resource limit
 - Upper bound on consumption
 - Even when system undercommitted
- Absolute units
 - MHz for CPU, MB for memory
 - Defaults to “unlimited” for cpu
 - Defaults to guest RAM size for memory
Max Example

- Current utilization
 - 600 MHz active
 - 400 MHz idle
- Start CPU-bound VM
 - 200 MHz max
 - Execution throttled
- New utilization
 - 800 MHz active
 - 200 MHz idle
 - VM prevented from using idle resources
Resource Entitlements

- Resources that each VM “deserves”
 - Combining shares, min, and max
 - Allocation primarily based on shares
 - Constrained by min and max
- What if VM idles?
 - Don’t give VM more than it demands
 - Resources redistributed to active VMs
 - Unused mins not wasted
Resource Pools

- **Motivation**
 - Allocate aggregate resources for sets of VMs
 - Isolation between pools, sharing within pools
 - Flexible hierarchical organization
 - Access control and delegation

- **What is a resource pool?**
 - Named object in VirtualCenter inventory
 - Access control permissions
 - Min, max, and shares for both CPU and memory
 - Parent pool, child pools and VMs
Resource Pools Example

- Admin manages users
- Policy: Alice’s share 50% more than Bob’s
- Users manage own virtual machines
- Not shown: min, max
- VM allocations:

Admin

Alice
- 75 Alice
- 300 Admin

Bob
- 75 Alice
- 200 Admin
- 400 Bob

VM1
- 75 Alice

VM2
- 400 Bob

VM3
Example: Bob Adds Virtual Machine

- Same policy
- Pools isolate users
- Alice still gets 50% more than Bob
- VM allocations:

```
VM allocations:
Bob
  400 Bob
  200 Admin
Alice
  75 Alice
  300 Admin
VM1
VM2
VM3
VM4
```
Resource Pool Admission Control

- Pool admission control
 - Same check as before, at pool level
 - Sum of mins for pool children \leq pool capacity
 - When create pool, power-on VM, change settings

- Growable Min option
 - Dynamically request more capacity from parent
 - Simplifies policies where hard partitions too rigid
Resource Pools UI
Delegated Administration

- Cluster administrator
 - Default pool contains all cluster resources
 - Aggregate cpu and memory capacity of all hosts
 - Carves up cluster resources into pools
 - Provides bulk allocations to pool administrators

- Pool administrator
 - Pool may reflect department, project, client, etc.
 - Carves up pool resources into smaller pools for users

- End user
 - Allocates resources from personal pool to virtual machines
 - View restricted to personal pool hierarchy
Best Practices

- Use Mins and Shares appropriately
 - Shares generally more flexible policy tool
 - Use shares to isolate without hard partitioning
 - Use mins to guarantee acceptable service
- Maintain some spare capacity
 - Don’t use mins that commit entire cluster
 - Slack for maintenance, rebalancing
 - Needed to tolerate host failures
Talk Overview

- Context and features
- Managing resources
- **Virtual machine placement**
- System architecture
- Summary
Virtual Machine Placement

- **Goals**
 - Balance virtual machine load across hosts in cluster
 - Enforce resource policies accurately
 - Respect placement constraints

- **Dynamic balancing**
 - Monitor key virtual machine, pool, and host metrics
 - Deliver entitled resources to pools and VMs
 - Recommend migrations (prioritized list)

- **Initial placement**
 - Power on virtual machine in resource pool
 - Recommend host (prioritized list)
Placement Constraints

- VMotion compatibility
 - Processor type
 - SAN and LAN connectivity

- Anti-affinity rules
 - Run virtual machines on different hosts
 - Motivation: high-availability, clustering

- Affinity rules
 - Run virtual machines on same host
 - Motivation: locality, performance benefits
Dynamic Balancing

- **What to balance?**
 - Load, adjusted for resource entitlement
 - Load = utilization, if all VMs equally important

- **When to balance?**
 - Re-evaluate every few minutes
 - Changes to pool or VM settings
 - Add or remove host

- **Aggressiveness**
 - Migration rate, recommendation strength
 - Depends on severity of imbalance
Balancing Details

- Compute virtual machine entitlements
 - Based on pool and virtual machine resource allocations
 - Don’t give virtual machine more than it demands
 - Reallocate extra resources fairly
- Compute host loads
 - Sum entitlements for virtual machines on host
 - Normalize by host capacity
- Consider possible VMotions
 - Evaluate effect on cluster balance
 - Evaluate migration cost for involved hosts
- Recommend best moves (if any)
Dynamic Balancing UI

A Cluster

Summary

General
- Dynamic Resource Scheduling: Enabled
- Distributed Availability Services: Enabled
- Number of Hosts: 12
- Total Processors: 24
- Total CPU: 36 GHz
- Total Memory: 24 GB
- Number of Virtual Machines: 37
- Running Virtual Machines: 33
- Total Migrations: 100
- Active Migrations: 3

Dynamic Resource Scheduling (DRS)
- Automation Level: Partially Automated
- Migration Rate: Moderate

Distributed Availability Services (DAS)
- Admission Control: Allow constraint violations
- Configured Failure Capacity: 3 Hosts
- Current Failure Capacity: 3 Hosts (4.6 GHz, 2.0 MB)

DRS Resource Distribution

DRS Migration Recommendations

Priority	Virtual Machine	Reason	Current Host	Target Host	CPU Load	Memory Load
1 | Solaris (newtime-0) | Improve CPU fairness | esx011.vm. | esx016.vm. | 84.1 | 57.3
2 | MS-DOG | Improve CPU fairness | esx012.vm. | esx011.vm. | 84.8 | 54.8
3 | MS-DOG 3 | Improve Memory fairness | esx019.vm. | esx012.vm. | 64.1 | 57.2

Apply Recommendation | Show Performance Charts

Migration History | Last Hour: 18
Initial Placement UI
Best Practices

- Follow strong recommendations
 - Otherwise balance and fairness may deteriorate
 - Some VMotion is necessary
- Enable automation
 - Choose default based on environment, comfort level
 - Use per-VM automation level overrides
 - Let DRS autonomously manage most VMs
 - Can keep human in loop for critical VMs
Talk Overview

- Context and features
- Managing resources
- Virtual machine placement
- System architecture
- Summary
System Architecture Overview

VirtualCenter

DB

clients

UI

SDK

stats + actions

cluster_1

DRS_1

... cluster_n

DRS_n
System Architecture Constraints

- Cluster size
 - LAN, not WAN
 - Up to 32 hosts per cluster
 - Host capacities may differ significantly
- Time scale
 - Minutes, not milliseconds
 - VMotion VM downtime \(\approx \) milliseconds, but end-to-end latency \(\approx \) tens of seconds
 - Migrate VM infrequently \(\approx \) minutes to hours
- Algorithm performance
 - Milliseconds, not minutes
 - Operations occur at human time scale
Summary

- Automatic virtual machine placement
 - Recommendations or full automation
 - Initial placement at virtual machine power-on
 - Dynamic load balancing
- Powerful resource controls
 - Flexible cluster-wide policies
 - Hierarchical resource pools
 - Virtual machine affinity rules
- Future directions
 - Integrated I/O bandwidth management
 - Detect longer-term trends, proactive migration