
Perspectives on Virtualized
Resource Management

Carl Waldspurger
June 26, 2013

10th International Conference on Autonomic Computing

USENIX Federated Conference Week, San Jose

Resource Management

� Map workloads onto physical resources

� Varying importance

� Diverse resources, granularities

� Complex interactions

2

Virtualization

� Hypervisor: extra level of indirection

� Powerful new capabilities

3

All problems in computer science can be solved
by another level of indirection… — David Wheeler

Virtualization: Wildly Successful
4

Source: IDC Server Virtualization Forecast

%
W

or
kl

oa
ds

 i
n

VM
s

Indirection: Double-Edged Sword

� Performance isolation

� Semantic gap

� Complexity

5

… but that usually will create another problem.
— David Wheeler

My Vantage Point

� Research and product development

� Systems I’ve helped build
Spawn (PARC), lottery/stride scheduling (MIT),
DCPI and Itsy (DEC), ESX and DRS (VMware), …

� Challenges building autonomic systems

6

7

No Silver Bullet

Recurring Themes

� Randomization and sampling

� Indirection and interposition

� Semantic gap and transparency

� Hardware/software co-evolution

8

Path to Autonomic Systems

1.  Measurement

2.  Modeling

3.  Mechanisms

4.  Policies

9

1. Accurate Measurement
Profiling, accounting, virtualized timekeeping

10

If you can’t measure something, you can’t
understand it. If you can’t understand it,
you can’t control it. — H. James Harrington

Measurements Gone Wrong

� Blind spots, distortions

� Statistical profiling

� CPU accounting

� Virtualized time-keeping

11

Virtualized Timekeeping

� Maintain illusion of dedicated system

� Periodic guest timer interrupts
� Track passage of real time
� Statistical process accounting

� What happens when VM descheduled?

12

Timer Interrupt Backlog
13

[Animation]

Timer Interrupt Backlog
14

descheduled

[Animation]

Timer Interrupt Backlog
15

descheduled

[Animation]

Timer Interrupt Backlog
16

descheduled

[Animation]

Timer Interrupt Backlog
17

descheduled

[Animation]

Timer Interrupt Backlog
18

descheduled

[Animation]

Timer Interrupt Backlog
19

descheduled

[Animation]

Timer Interrupt Backlog
20

descheduled

[Animation]

Timer Interrupt Backlog
21

descheduled

[Animation]

deschedule
d

Less Distortion: Timer Sponge
22

descheduled

[Animation]

deschedule
d

Less Distortion: Timer Sponge
23

descheduled

[Animation]

deschedule
d

Less Distortion: Timer Sponge
24

descheduled

[Animation]

Hazards of Warping Time

� Distorting guest time measurements

� Degrading network throughput

� Exposing guest bugs

25

Future Research Directions:
Measurement

26

� Descheduled time distortion — still!

� Guest access to hardware counters

� Distributed measurements

27

2. Practical Modeling
Cache locality, MRCs, big data

28

Essentially, all models are wrong,
but some are useful. — George Box

Modeling Goals

� Predict effect of change
� Resource allocation
� Reconfiguration

� Inform higher-level policies
� Determine if satisfiable
� Both reactive and proactive

29

Cache Modeling

� Inform cache sizing policy
� Performance non-linear in allocation
� Marginal utility

� Mattson stack algorithm (1970)
� Computes misses for all possible sizes
� Very powerful, single pass
� Still expensive

30

Mattson Algorithm Example
31

references B … A D C

distances ∞ 3 7 4 …

� Reuse distance
� Unique refs since last access
� Distance from top of LRU-ordered stack

� Hit if distance < cache size, else miss

Mattson Algorithm Example
32

 A references B … A D C

distances ∞ 3 7 4 …

✓

� Reuse distance
� Unique refs since last access
� Distance from top of LRU-ordered stack

� Hit if distance < cache size, else miss

1
[Animation]

Mattson Algorithm Example
33

 A B references B … A D C

distances ∞ 3 7 4 …

✗ ✓

� Reuse distance
� Unique refs since last access
� Distance from top of LRU-ordered stack

� Hit if distance < cache size, else miss

1

✓

2
[Animation]

Mattson Algorithm Example
34

 A C B references B … A D C

distances ∞ 3 7 4 …

✗ ✓

� Reuse distance
� Unique refs since last access
� Distance from top of LRU-ordered stack

� Hit if distance < cache size, else miss

1

✓

2 3

✓ ✗

[Animation]

Cache Utility Curves
� How performance

varies with size

� MRC
�  miss ratio curve
�  miss rate curve

� Working set “knees”

� Many applications

35

Allocation

M
is

se
s

knee

knee

Mattson Implementations

� Naïve Stack
�  N = total refs, M = unique refs
� O(N � M) time, O(M) space

� Optimized
�  Balanced tree: compute reuse distance
�  Hash table: maps address to tree node
� O(N log M) time, O(M) space

� Parallel algorithms

36

MRC Approximations
� Hardware Support
� Qureshi and Patt (MICRO ’06)

� Temporal sampling
� Bursty tracing, detect phase transitions
� RapidMRC (ASPLOS ’09), Zhao et al. (ATC ’11)

� Spatial sampling
� VMware memory MRCs (USPTO App ’10)
� CloudPhysics I/O MRCs

37

Sampled-Page MRCs

� Spatial sampling
�  Trace only small random subset of pages
�  Each sample represents many pages
�  Run full LRU-based Mattson on subset

� Rate-limit trace rearming for hot pages

� Extremely efficient
�  Excellent accuracy with < 1% overhead
�  Leave on continuously, online MRCs

38

Sampled-IO MRCs

� New spatial sampling technique
� CloudPhysics caching analytics
� Detailed paper in preparation

� Huge performance wins
� Orders of magnitude faster, smaller
� Surprising accuracy with 1% sample

� Practical online construction

39

Sampled-IO MRC (Small Trace)
40

Cache Size (MB)

Re
ad

 M
is

s
Ra

ti
o

(%
) 2 million IOs

 4 GB reads
10 GB writes

Sampled-IO MRC (Larger Trace)
41

Cache Size (GB)

Re
ad

 M
is

s
Ra

ti
o

(%
) 7 day trace

153 million IOs
 1.2 TB reads
 0.4 TB writes

Modeling Complex Systems

� Many interacting components
� E.g. cache, bandwidth to backing store
� Huge state space: cpu × mem × net × io × …

� Approaches

42

� Experimentation
� Observation

� Analytical models
� Simulation

Active Experimentation

� Run many experiments on real system
� Load testing tools, e.g. HP LoadRunner
� VMware SDRS load injector (SOCC ’11)

� Experiment with cloned VMs
� Fork using live migration, vary allocations
� JustRunIt, Zheng et al. (ATC ’09)
� Nondeterminism, external dependencies

43

Passive Observation

� Observe many real systems
� Diverse configurations, devices
� Diverse workloads, demand patterns

� Reach critical mass of “big data”
� Model-by-query: lookup similar scenarios
�  Interpolate to handle sparseness

44

Future Research Directions:
Modeling

45

� MRC temporal dynamics
� Behavior at different time scales
� MRC “diffs” and “movies”

� General “microcosm” simulation?

� Multi-resource modeling

� Big data techniques

46

3. Effective Mechanisms
Co-scheduling, ballooning

47

Rule of Separation: Separate policy from
mechanism; separate interfaces from engines.

— Eric S. Raymond

Co-scheduling vCPUs

� Semantic gap
� What does 100% busy vCPU mean?
�  Useful work?

� Co-scheduling
� Maintain illusion of dedicated hardware
�  Limit skew between vCPUs within VM

� Alternatives
�  Para-virtualization, e.g. Hyper-V
�  Hardware assist, e.g. Intel PLE

48

Or spinning on lock?

VM Memory Reclamation

� Transparent: demand paging
�  Hard meta-level page replacement decisions
�  Best data to guide decisions internal to guest
�  “Double paging” anomaly

� Alternative: implicit cooperation
�  Coax guest into doing page replacement
�  Avoid meta-level policy decisions

49

Ballooning
50

Virtual disk
Guest swap

VM Physical Memory
Guest RAM

[Animation]

Ballooning
51

Virtual disk
Guest swap

VM Physical Memory
Guest RAM

may page out
Inflate: more pressure

[Animation]

Ballooning
52

Virtual disk
Guest swap

Deflate: less pressure

VM Physical Memory
Guest RAM

may page in

[Animation]

Ballooning Retrospective

� Exploits semantic gap
�  Complete transparency not always desirable
�  Coax guest into doing hard work

� Has worked well for a long time
�  Primary ESX memory reclamation mechanism
�  Now used by Hyper-V, Xen, KVM, EM4J, ...

� More recent issue: large pages

53

Large Pages
� Coarser mapping granularity
� Single x86 large page covers 512 small pages
� Reduces TLB misses, makes them cheaper

� Significant win for virtualization
� x86 nested paging hardware: Intel EPT, AMD RVI
� Two-dimensional page walk, quadratic cost
� Large pages reduce number of levels

54

Ballooning and Large Pages
� ESX hypervisor large-page management
� Start with large-page mappings
� Fragment on overcommit, re-coalesce

� Primitive guest OS large-page support
� Often pinned in memory, so can’t balloon!
� Windows can’t swap, Linux swaps some

55

Future Research Directions:
Mechanisms

56

� Coping with larger page granularity
� Severe dedup impact, HICAMP (ASPLOS ’12)

� Coarsened visibility

� Extreme design points, PrivateCore vCage

� Meta-mechanisms
� Cost-benefit, choose most appropriate
� E.g. dedup, balloon, compress, swap

� End-to-end QoS controls

57

4. Intuitive Policies
Specifications, microeconomics, automation

58

The limits of your language are the
limits of your world. — Ludwig Wittgenstein

Expressing Policies

� Resource Level
� Provided by modern virtualization systems
� Physical resource allocation: GHz, GB, Gbps

� Application Level
� Metrics more meaningful to user
� Response times, transaction rates, …

59

Resource-Level Policies

� Basic VM controls
�  Reservations, Limits
�  Shares

� Resource pools
�  Manage sets of VMs
�  Hierarchical
�  Cloud service providers

Org

Dev Test

60

2:1 Policy

200.Org 100.Org

Practical App-Level Policies

� Real world?
� Formal QoS/SLAs/SLOs surprisingly rare
� Admins running virtualized datacenters

� Expressing utility functions even harder

61

I never had a policy; I have just tried to do my
very best each and every day. — Abraham Lincoln

Microeconomic Techniques

� Market-based resource allocation
� Price equilibrates supply and demand
� Distributed solution to conflicting goals
� “Invisible hand” improves social welfare

� Much of real world works this way
� Plenty of interesting analogies
� Rent, taxes, arbitrage, …

62

Spawn: Early Computational Economy

� Xerox PARC, late 80s

� Distributed auction

�  Jobs bid for time slices
�  Hosts maximize profit
�  Sealed bid, second price

� Complex dynamics
�  Simple bidding strategy
�  Proportional control
�  Oscillations, chaos

63

Computational Economies Today

� Why not more common?
� Better alternatives for simple policies
� Auction overheads, stability concerns

� Public cloud pricing
� VM resources rented for real money
� Multi-tenancy requires sophisticated policies
� Trends: finer-grain, market-based pricing

64

Bidding Strategies

� Determining what resources are worth
�  Utility as function of performance
�  Performance as function of allocation

� Getting a good price
� Mechanical bid adjustment algorithm
� Game theory

� Need to automate, build into apps
�  Apps aware of own performance tradeoffs
�  Dynamic stability, volatility

65

A More Direct Alternative?

� “Unhappy” button
� Primitive, single-bit feedback
� Squeaky wheel gets the grease

� Empathic Systems Project (Northwestern)
�  Incorporate direct user feedback
� User-driven scheduling of interactive VMs

66

Future Research Directions:
Policies

67

� Raising abstraction level
� Single resource à multiple resources
� Physical allocation à application goals
� Many deep challenges

� Intuitive ways to specify
� Application-level vocabulary?
� Market-based prices?
� Empathic systems?

68

Research Directions
Toward More Autonomic Systems

69

We can only see a short distance ahead, but
we can see plenty there that needs to be done.

— Alan Turing

� Intuitive policies
� KISS, app-level, empathic, market-based

� Effective mechanisms
� End-to-end QoS, coarse control, meta

� Practical modeling
� Multi-resource, big data, MRC dynamics

� Accurate measurement
� Distortion, hardware access, distributed

70

Vision for Future: RMaaS

� Resource Management as a Service

� Offload decisions to “RM provider”
� Remote monitoring and control
� Leverage “big data” across customers

� Hybrid automation
� Transparently escalate to human experts
� Crowdsourcing possibilities

71

Questions?

carl@waldspurger.org

72

