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Resource Management 

� Map workloads onto physical resources 

� Varying importance 

� Diverse resources, granularities 

� Complex interactions 
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Virtualization 

� Hypervisor: extra level of indirection 

� Powerful new capabilities 

3 

All problems in computer science can be solved 
by another level of indirection…  — David Wheeler 



Virtualization: Wildly Successful 
4 

Source: IDC Server Virtualization Forecast 
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Indirection: Double-Edged Sword 

� Performance isolation 

� Semantic gap 

� Complexity 
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… but that usually will create another problem. 
— David Wheeler 



My Vantage Point 

� Research and product development 

� Systems I’ve helped build 
Spawn (PARC), lottery/stride scheduling (MIT),  
DCPI and Itsy (DEC), ESX and DRS (VMware), … 

� Challenges building autonomic systems 
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No Silver Bullet 



Recurring Themes 

� Randomization and sampling 

� Indirection and interposition 

� Semantic gap and transparency 

� Hardware/software co-evolution 
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Path to Autonomic Systems 

1.  Measurement 

2.  Modeling 

3.  Mechanisms 

4.  Policies 
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1. Accurate Measurement 
Profiling, accounting, virtualized timekeeping 
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If you can’t measure something, you can’t 
understand it. If you can’t understand it, 
you can’t control it.   — H. James Harrington 



Measurements Gone Wrong 

� Blind spots, distortions 

� Statistical profiling 

� CPU accounting 

� Virtualized time-keeping 
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Virtualized Timekeeping 

� Maintain illusion of dedicated system 

� Periodic guest timer interrupts 
� Track passage of real time 
� Statistical process accounting 

� What happens when VM descheduled? 
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Timer Interrupt Backlog 
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Timer Interrupt Backlog 
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Timer Interrupt Backlog 
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Less Distortion: Timer Sponge 
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Hazards of Warping Time 

� Distorting guest time measurements 

� Degrading network throughput 

� Exposing guest bugs 
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Future Research Directions: 
Measurement 
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� Descheduled time distortion — still! 

� Guest access to hardware counters 

� Distributed measurements 
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2. Practical Modeling 
Cache locality, MRCs, big data 
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Essentially, all models are wrong,  
but some are useful.  — George Box 



Modeling Goals 

� Predict effect of change 
� Resource allocation 
� Reconfiguration 

� Inform higher-level policies 
� Determine if satisfiable 
� Both reactive and proactive 
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Cache Modeling 

� Inform cache sizing policy 
� Performance non-linear in allocation 
� Marginal utility 

� Mattson stack algorithm (1970) 
� Computes misses for all possible sizes 
� Very powerful, single pass 
� Still expensive 
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Mattson Algorithm Example 
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references B   …  A D C   

distances ∞ 3 7 4 …  

� Reuse distance 
� Unique refs since last access 
� Distance from top of LRU-ordered stack 

� Hit if distance < cache size, else miss 

   



Mattson Algorithm Example 
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 A references B   …  A D C   

distances ∞ 3 7 4 …  

✓   

� Reuse distance 
� Unique refs since last access 
� Distance from top of LRU-ordered stack 

� Hit if distance < cache size, else miss 
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Mattson Algorithm Example 
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 A  B references B   …  A D C   

distances ∞ 3 7 4 …  

✗   ✓   

� Reuse distance 
� Unique refs since last access 
� Distance from top of LRU-ordered stack 

� Hit if distance < cache size, else miss 

1 

✓   
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[Animation] 



Mattson Algorithm Example 
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 A  C  B references B   …  A D C   

distances ∞ 3 7 4 …  

✗   ✓   

� Reuse distance 
� Unique refs since last access 
� Distance from top of LRU-ordered stack 

� Hit if distance < cache size, else miss 

1 

✓   

2 3 

✓   ✗   

[Animation] 



Cache Utility Curves 
� How performance  

varies with size 

� MRC 
�  miss ratio curve 
�  miss rate curve 

� Working set “knees” 

� Many applications 
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Mattson Implementations 

� Naïve Stack 
�  N = total refs, M = unique refs 
� O(N � M) time, O(M) space 

� Optimized 
�  Balanced tree: compute reuse distance 
�  Hash table: maps address to tree node 
� O(N log M) time, O(M) space 

� Parallel algorithms 
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MRC Approximations 
� Hardware Support 
� Qureshi and Patt (MICRO ’06) 

� Temporal sampling 
� Bursty tracing, detect phase transitions 
� RapidMRC (ASPLOS ’09), Zhao et al. (ATC ’11) 

� Spatial sampling 
� VMware memory MRCs (USPTO App ’10) 
� CloudPhysics I/O MRCs 
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Sampled-Page MRCs 

� Spatial sampling 
�  Trace only small random subset of pages 
�  Each sample represents many pages 
�  Run full LRU-based Mattson on subset 

� Rate-limit trace rearming for hot pages 

� Extremely efficient 
�  Excellent accuracy with < 1% overhead 
�  Leave on continuously, online MRCs  
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Sampled-IO MRCs 

� New spatial sampling technique 
� CloudPhysics caching analytics 
� Detailed paper in preparation 

� Huge performance wins 
� Orders of magnitude faster, smaller 
� Surprising accuracy with 1% sample 

� Practical online construction 
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Sampled-IO MRC (Small Trace) 
40 

Cache Size (MB) 

Re
ad

 M
is

s 
Ra

ti
o 

(%
)   2 million IOs 

  4 GB reads 
10 GB writes 



Sampled-IO MRC (Larger Trace) 
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Modeling Complex Systems 

� Many interacting components 
� E.g. cache, bandwidth to backing store 
� Huge state space: cpu × mem × net × io × … 

� Approaches 
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� Experimentation 
� Observation 

� Analytical models 
� Simulation 



Active Experimentation 

� Run many experiments on real system 
� Load testing tools, e.g. HP LoadRunner 
� VMware SDRS load injector (SOCC ’11) 

� Experiment with cloned VMs 
� Fork using live migration, vary allocations 
� JustRunIt, Zheng et al. (ATC ’09) 
� Nondeterminism, external dependencies 
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Passive Observation 

� Observe many real systems 
� Diverse configurations, devices 
� Diverse workloads, demand patterns 

� Reach critical mass of “big data” 
� Model-by-query: lookup similar scenarios 
�  Interpolate to handle sparseness 
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Future Research Directions: 
Modeling 
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� MRC temporal dynamics 
� Behavior at different time scales 
� MRC “diffs” and “movies” 

� General “microcosm” simulation? 

� Multi-resource modeling 

� Big data techniques 
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3. Effective Mechanisms 
Co-scheduling, ballooning 
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Rule of Separation: Separate policy from 
mechanism; separate interfaces from engines.                       

— Eric S. Raymond 



Co-scheduling vCPUs 

� Semantic gap 
� What does 100% busy vCPU mean? 
�  Useful work? 

� Co-scheduling 
� Maintain illusion of dedicated hardware 
�  Limit skew between vCPUs within VM 

� Alternatives 
�  Para-virtualization, e.g. Hyper-V 
�  Hardware assist, e.g. Intel PLE 
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Or spinning on lock? 



VM Memory Reclamation 

� Transparent: demand paging 
�  Hard meta-level page replacement decisions 
�  Best data to guide decisions internal to guest  
�  “Double paging” anomaly 

� Alternative: implicit cooperation 
�  Coax guest into doing page replacement 
�  Avoid meta-level policy decisions 
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Ballooning 
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Virtual disk 
Guest swap 

VM Physical Memory 
Guest RAM 

[Animation] 



Ballooning 
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Virtual disk 
Guest swap 

VM Physical Memory 
Guest RAM 

may page out 
Inflate: more pressure 

[Animation] 



Ballooning 
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Virtual disk 
Guest swap 

Deflate: less pressure 

VM Physical Memory 
Guest RAM 

may page in 

[Animation] 



Ballooning Retrospective 

� Exploits semantic gap 
�  Complete transparency not always desirable 
�  Coax guest into doing hard work 

� Has worked well for a long time 
�  Primary ESX memory reclamation mechanism 
�  Now used by Hyper-V, Xen, KVM, EM4J, ... 

� More recent issue: large pages 
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Large Pages 
� Coarser mapping granularity 
� Single x86 large page covers 512 small pages 
� Reduces TLB misses, makes them cheaper 

� Significant win for virtualization 
� x86 nested paging hardware: Intel EPT, AMD RVI 
� Two-dimensional page walk, quadratic cost 
� Large pages reduce number of levels 
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Ballooning and Large Pages 
� ESX hypervisor large-page management 
� Start with large-page mappings 
� Fragment on overcommit, re-coalesce 

� Primitive guest OS large-page support 
� Often pinned in memory, so can’t balloon! 
� Windows can’t swap, Linux swaps some 
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Future Research Directions: 
Mechanisms 
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� Coping with larger page granularity 
� Severe dedup impact, HICAMP (ASPLOS ’12) 

� Coarsened visibility 

� Extreme design points, PrivateCore vCage 

� Meta-mechanisms 
� Cost-benefit, choose most appropriate 
� E.g. dedup, balloon, compress, swap  

� End-to-end QoS controls 
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4. Intuitive Policies 
Specifications, microeconomics, automation 
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The limits of your language are the 
limits of your world.  — Ludwig Wittgenstein 



Expressing Policies 

� Resource Level 
� Provided by modern virtualization systems 
� Physical resource allocation: GHz, GB, Gbps 

� Application Level 
� Metrics more meaningful to user 
� Response times, transaction rates, … 
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Resource-Level Policies 

� Basic VM controls 
�  Reservations, Limits 
�  Shares 

� Resource pools 
�  Manage sets of VMs 
�  Hierarchical 
�  Cloud service providers 

Org 

Dev Test 
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2:1 Policy 

200.Org 100.Org 



Practical App-Level Policies 

� Real world? 
� Formal QoS/SLAs/SLOs surprisingly rare 
� Admins running virtualized datacenters 

� Expressing utility functions even harder 
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I never had a policy; I have just tried to do my 
very best each and every day.  — Abraham Lincoln 



Microeconomic Techniques 

� Market-based resource allocation 
� Price equilibrates supply and demand 
� Distributed solution to conflicting goals 
� “Invisible hand” improves social welfare 

� Much of real world works this way 
� Plenty of interesting analogies 
� Rent, taxes, arbitrage, … 
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Spawn: Early Computational Economy 

� Xerox PARC, late 80s 

� Distributed auction 

�  Jobs bid for time slices 
�  Hosts maximize profit 
�  Sealed bid, second price 

� Complex dynamics 
�  Simple bidding strategy 
�  Proportional control 
�  Oscillations, chaos 
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Computational Economies Today 

� Why not more common? 
� Better alternatives for simple policies 
� Auction overheads, stability concerns 

� Public cloud pricing 
� VM resources rented for real money 
� Multi-tenancy requires sophisticated policies 
� Trends: finer-grain, market-based pricing 
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Bidding Strategies 

� Determining what resources are worth 
�  Utility as function of performance 
�  Performance as function of allocation 

� Getting a good price 
� Mechanical bid adjustment algorithm 
� Game theory 

� Need to automate, build into apps 
�  Apps aware of own performance tradeoffs 
�  Dynamic stability, volatility 
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A More Direct Alternative? 

� “Unhappy” button 
� Primitive, single-bit feedback 
� Squeaky wheel gets the grease 

� Empathic Systems Project (Northwestern)  
�  Incorporate direct user feedback 
� User-driven scheduling of interactive VMs 

66 



Future Research Directions: 
Policies 
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� Raising abstraction level 
� Single resource à multiple resources 
� Physical allocation à application goals 
� Many deep challenges 

� Intuitive ways to specify 
� Application-level vocabulary? 
� Market-based prices? 
� Empathic systems? 
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Research Directions 
Toward More Autonomic Systems 
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We can only see a short distance ahead, but  
we can see plenty there that needs to be done. 

— Alan Turing 



� Intuitive policies 
� KISS, app-level, empathic, market-based 

� Effective mechanisms 
� End-to-end QoS, coarse control, meta 

� Practical modeling 
� Multi-resource, big data, MRC dynamics 

� Accurate measurement 
� Distortion, hardware access, distributed 
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Vision for Future: RMaaS 

� Resource Management as a Service 

� Offload decisions to “RM provider” 
� Remote monitoring and control 
� Leverage “big data” across customers 

� Hybrid automation 
� Transparently escalate to human experts 
� Crowdsourcing possibilities 
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Questions? 

carl@waldspurger.org 
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