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We present Memtrade, the first practical marketplace for disaggregated memory clouds. Clouds introduce a
set of unique challenges for resource disaggregation across different tenants, including resource harvesting,
isolation, and matching. Memtrade allows producer virtual machines (VMs) to lease both their unallocated
memory and allocated-but-idle application memory to remote consumer VMs for a limited period of time.
Memtrade does not require any modifications to host-level system software or support from the cloud provider.
It harvests producer memory using an application-aware control loop to form a distributed transient remote
memory pool with minimal performance impact; it employs a broker to match producers with consumers
while satisfying performance constraints; and it exposes the matched memory to consumers through different
abstractions. As a proof of concept, we propose two such memory access interfaces for Memtrade consumers
– a transient KV cache for specified applications and a swap interface that is application-transparent. Our
evaluation using real-world cluster traces shows that Memtrade provides significant performance benefit for
consumers (improving average read latency up to 2.8×) while preserving confidentiality and integrity, with
little impact on producer applications (degrading performance by less than 2.1%).
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1 INTRODUCTION
Cloud resources are increasingly being offered in an elastic and disaggregated manner. Examples
include serverless computing [8, 13] and disaggregated storage [5, 72, 81, 82, 114] that scale rapidly
and adapt to highly dynamic workloads [2, 83, 84, 86, 97]. Memory, however, is still largely provi-
sioned statically, especially in public cloud environments. In public clouds, a user launching a new
VM typically selects from a set of static, pre-configured instance types, each with a fixed number of
cores and a fixed amount of DRAM [4, 29, 40]. Although some platforms allow users to customize
the amount of virtual CPU and DRAM [19], the amount remains static throughout the lifetime of
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the instance. Even in serverless frameworks, which offer elasticity and auto-scaling, a function has
a static limit on its allocation of CPU and memory [9].
At the same time, long-running applications deployed on both public and private clouds are

commonly highly over-provisioned relative to their typical memory usage. For example, cluster-
wide memory utilization in Google, Alibaba, and Meta datacenters hovers around 40%–60% [74,
102, 104, 108]. Large-scale analytics service providers that run on public clouds, such as Snowflake,
fare even worse – on average 70%–80% of their memory remains unutilized [114]. Moreover, in
many real-world deployments, workloads rarely use all of their allocated memory all of the time.
Often, an application allocates a large amount of memory but accesses it infrequently (§2.2). For
example, in Google’s datacenters, up to 61% of allocated memory remains idle [85]. In Meta’s private
datacenters, within a 10-minuteswindow, applications use only 30–60% of the allocatedmemory [96].
Since DRAM is a significant driver of infrastructure cost and power consumption [21, 67, 68, 96],
excessive underutilization leads to high capital and operating expenditures, as well as wasted
energy (and carbon emissions). Although recent remote memory systems address this by satisfying
an application’s excess memory demand from an underutilized server [47, 51, 56, 74, 85, 95, 103],
existing frameworks are designed for private datacenters.
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Fig. 1. Latency characteristics of different memory
technologies in a disaggregated system.

Furthermore, with the emergence of co-
herent interfaces like Compute Express Link
(CXL) [18], next-generation datacenter designs
are moving towards tiered-memory subsys-
tems [89, 96]. Servers within a rack can be con-
nected through CXL switches and access each
other memory. In such a system, CPUs of one
server will have access to heterogeneous mem-
ory types with varied latency, bandwidth, and
performance characteristics (Figure 1). While
running multiple applications in such a rack-
scale system, system-wide application-level
performance will highly depend on an appli-
cation’s share to different memory tiers. Efficiently rightsizing different memory tiers, moving
cold pages from faster to slower memory tiers, and matching harvested memories on different
tiers to appropriate applications with a view to ensuring performance is challenging in such a
disaggregated system.

In this paper, we harvest both unallocated and allocated-but-idle application memory to enable
remote memory in public clouds. We propose a new memory consumption model that allows over-
provisioned and/or idle applications (producers) to offer excess idle memory to memory-intensive
applications (consumers) that are willing to pay for additional memory for a limited period of time
at an attractive price, via a trusted third-party (broker). Participation is voluntary, and either party
can leave at any time. Practical realization of this vision must address following challenges:
(1) Immediately Deployable. Our goal is that Memtrade is immediately deployable on existing public

or private clouds. Prior frameworks depend on host kernel or hypervisor modifications [47, 51,
74, 85, 95, 108]. In many cases (e.g., public cloud setting, server configuration restrictions), a
tenant cannot modify host-level system software which would require the operator to manage
the remote memory service. In addition, prior work assumes the latest networking hardware
and protocols (e.g., RDMA) [47, 56, 74, 85, 95, 103, 108]; availability of these features in public
clouds is limited, restricting adoption. Memtrade being an ubiquitous solution, allows users hop
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on any existing machine and readily deploy it without disrupting the running application(s) and
modifying the underline kernel.

(2) Efficient Harvesting. Memory harvesting needs to be lightweight, transparent and easily de-
ployable without impacting performance. Most prior work includes only a VM’s unallocated
memory in the remote memory pool. Leveraging idle application-level memory – allocated
to an application but later unused or accessed infrequently – significantly enhances remote
memory capacity. This is especially challenging in public clouds, where a third-party provider
has limited visibility of tenant workloads, and workloads may shift at any time. Existing cold
page detection-based [44, 85] proactive page reclamation techniques need significant CPU and
memory resources, along with host kernel or hypervisor modifications [96].

(3) Performant Consumption. To ensure producer-side performance, Memtrade must return a pro-
ducer’s harvested memory seamlessly when needed. Memory offered to consumers may also
disappear due to a sudden burst in the producer’s own memory demand, or if a producer leaves
unexpectedly. Memtrade needs to manage this unavailability to provide a high-performance
memory interface. Besides, modern datacenters are going to observe an architectural paradigm
shift towards memory pooling and disaggregation where efficiently migrating hot/cold memories
to appropriate memory tiers will be a major concern [89, 96]. Memtrade harvester needs to be
aware of the impact of different memory tiers. Effectively harvesting free spaces on the faster
memory tiers while moving colder pages to the slower tiers can help tiered-memory subsystems.

(4) Incentivization and ResourceMatching.Unlike prior work, which assumes cooperative applications,
in a public cloud setting, we need to create a market where producers and consumers have
monetary incentives to participate. Producers must be compensated for leasing memory, and
the price must be attractive to consumers compared to alternatives (e.g., existing in-memory
caching services or spot instances). In addition, producers have varied availability and bursty
workload demands, while consumers may have their own preferences regarding remote memory
availability, fragmentation, network overhead, and application-level performance, all which must
be considered when matching producers to consumers.
We design and develop Memtrade, an immediately-deployable realization of remote memory on

public clouds that addresses these challenges without any host kernel or hypervisor modifications.
Memtrade employs a harvester in each producer VM to monitor its application-level performance
and adaptively control resource consumption.The harvester uses an adaptive control loop that
decides when to harvest from and when to return memory to the producer.
To prevent performance degradation in memory-sensitive applications, we design a novel in-

memory swap space, Silo, which serves as a temporary victim cache for harvested pages. In the case
of a sudden loss of performance, the harvester proactively prefetches previously-harvested pages
back into memory. The combination of these mechanisms allows Memtrade to harvest idle pages
with low impact to producer workload performance and offer them to consumers. Consumers of
Memtrade can access the harvested memory through a key-value (KV) cache or a swap interface.
For public cloud adaptation or secure memory consumption, Memtrade consumer interfaces provide
optional plugable cryptographic protections for the confidentiality and integrity of data stored in
the untrusted producer VM.
To maximize cluster-wide utilization, Memtrade employs a broker – a central coordinator that

manages the remote-memory market and matches producers and consumers based on their supply
and demand, and helps facilitate their direct communication. The broker sets the price per unit of
remote memory and is incentivized by receiving a cut of monetary transactions. The broker does
not require any support from the cloud provider, and it does not need to economically benefit the
cloud providers to be viable. Of course, cloud providers may choose to support it, but it’s optional.
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One can implement their own pricing strategies based on different objectives; Memtrade broker
service is orthogonal towards the pricing and matching mechanisms.
Although we focus primarily on virtualized public clouds, Memtrade can be deployed in other

settings, such as private datacenters and containerized clouds. We plan to open-source Memtrade.
Overall, we make the following contributions:
• Memtrade is the first end-to-end system that enables a marketplace for disaggregated memory
on clouds (§3). Memtrade is easily-deployable without any support from the cloud provider.

• We design a system to identify and harvest idle memory with minimal overhead and negligible
performance impact (§4), which uses Silo – a novel in-memory victim cache for swapped-out
pages to reduce performance loss during harvesting an application’s idle memory.

• We design a broker that arbitrates between consumers and producers, enables their direct com-
munication and implements a placement policy based on consumer preferences, fragmentation,
and producer availability (§5).

• Memtrade improves consumer average latency by up to 2.8×, while impacting producer latency
by less than 2.1% (§7), and improves memory utilization (up to 97.9%).

2 BACKGROUND ANDMOTIVATION
2.1 Remote Memory
Remotememory exposes capacity available in remote hosts as a pool of memory shared amongmany
machines. It is often implemented logically by leveraging unallocated memory in remote machines
via well-known abstractions, such as files [47], remote memory paging [51, 56, 71, 74, 90], distributed
OS virtual memory management [108] and the C++ Standard Library data structures [103]. Existing
frameworks require specialized kernels, hypervisors or hardware that might not be available
in public clouds. Prior works focus on private-cloud use cases [47, 51, 56, 74, 85, 103] and do
not consider the transient nature of public-cloud remote memory, nor the isolation and security
challenges when consumers and producers belong to different organizations.
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(c) Snowflake Cloud
Fig. 2. Cluster resources remain significantly unallocated in (a) Google, (b) Alibaba, and (c) Snowflake.

2.2 Resource Underutilization in Cloud Computing
Underutilized Resources. Due to over-provisioning, a significant portion of resources remains

idle in private and public clouds that run a diverse mix of workloads. To demonstrate this, we
analyze production traces of Google [25], Alibaba [1], and Snowflake [114] clusters for periods of
29 days, 36 hours, and 14 days, respectively (Figure 2). In Google’s cluster, averaging over one-hour
windows, memory usage never exceeds 60% of cluster capacity. In Alibaba’s cluster, at least 30% of
the total memory capacity always remains unused. Even worse, in Snowflake’s cluster, which runs
on public clouds, 80% of memory is unutilized on average.
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Fig. 3. (a) Unallocated memory remains available for long periods, but (b) idle memory are reused quickly.
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Fig. 4. Performance drop while harvesting memory for (a) Zipfian trace on Redis, and (b) XGBoost training.

However, idle memory alone is not sufficient for providing remote memory access; in the absence
of dedicated hardware such as RDMA, it also requires additional CPU and network-bandwidth both
at the consumer and the producer. Fortunately, the production traces show that a significant portion
of these resources are underutilized. Approximately, 50–85% of cluster CPU capacity remains idle
in all of these traces; Alibaba and Snowflake traces, which include bandwidth usage, show that
50–75% of network capacity remains idle.

Availability of Unallocated and Idle Memory. Another important consideration is whether unuti-
lized memory remains available for sufficiently long periods of time to enable other applications to
access it productively. Figure 3a shows that 99% of the unallocated memory in the Google cluster
remains available for at least an hour. Beyond unallocated memory, which constitutes 40% of the
memory in the Google traces, a significant pool of memory is allocated to applications but remains
idle [51]. Figure 3b shows that an additional 8% of total memory is application memory that is
not touched for an hour or more. In public clouds, where many tenants are over-provisioned, the
proportion of application idle memory may be much higher [114].

Uses for Transient Remote Memory. Transient remote memory seems attractive for numerous uses
in many environments. KV caches are widely used in cloud applications [42, 53, 55, 62, 98, 122],
and many service providers offer popular in-memory cache-as-a-service systems [6, 12, 30, 34].
Similarly, transient memory can be used for filesystem-as-a-service [126] in serverless computing.
Application developers routinely deploy remote caches in front of persistent storage systems, and
in-memory caches are a key driver of memory consumption in clouds [53, 98].
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2.3 Disaggregation Challenges in Public Clouds
Harvesting Application Memory. Beyond unallocated memory, a large amount of potentially-idle

memory is allocated to user VMs. In many cases, harvesting such idle memory has minimal perfor-
mance impacts. However, harvesting too aggressively can result in severe performance degradation,
or even crash applications. Figure 4 shows the performance degradation while harvesting memory
from two applications. We can harvest a substantial amount of memory from each without much
performance loss. However, performance can quickly fall off a cliff, and dynamic application load
changes necessitate adaptive harvesting decisions in real-time.

To reclaim an application’s idle memory, existing solutions use kernel modifications [44, 85, 96] to
determine the age of pages mapped by the application. A well-explored technique is to periodically
scan the accessed bit present in page table entries to infer if a physical page is accessed in a given
time period. If a page’s age goes beyond a threshold, then it is marked as a cold page and, therefore,
reclaimed. Such an approach is difficult to deploy in public clouds, where each user controls its
own kernel distribution. Moreover, continuous page tracking can consume significant CPU and
memory and require elevated permissions from the host kernel [27].

Transience of Remote Memory. Producers and consumers have their own supply and demand
characteristics. At the same time, producers may disappear at any time, and the amount of unallo-
cated and idle memory that can be harvested safely from an application varies over time. Given the
remote I/O cost, too much churn in memory availability may deteriorate a consumer’s performance.

Security. VMs that do not belong to the same organization in the public cloud are completely
untrusted. Since consumer data residing in remote memory may be read or corrupted due to
accidents or malicious behavior, its confidentiality and integrity must be protected. Producer
applications must also be protected from malicious remote memory operations, and the impact of
overly-aggressive or malicious consumers on producers must be limited.

3 MEMTRADE: OVERVIEW
Memtrade is a system that realizes remote memory on existing clouds. It consists of three core
components (Figure 5): (i) producers, which expose their harvested idle memory to the remote-
memory market (§4); (ii) the broker, which pairs producers with consumers while optimizing
cluster-wide objectives, such as maximizing resource utilization (§5); and (iii) consumers, which
request remote-memory allocations based on their demand and desired performance characteristics
(§6). This section provides an overview of these components and their interactions; more details
appear in subsequent sections.

Producers. A producer employs a collection of processes to harvest idle memory within a VM,
making it available to the remote-memory market. A producer voluntarily participates in the market
by first registering with the broker. The producer then monitors its resource usage and application-
level performance metrics, periodically notifying the broker about its resource availability. The
producer harvests memory slowly until it detects a possible performance degradation, causing it to
back off and enter recovery mode. During recovery, memory is returned to the producer application
proactively until its original performance is restored. When it is safe to resume harvesting, the
producer transitions back to harvesting mode.
When the broker matches a consumer’s remote memory request to the producer, it is notified

with the consumer’s connection credentials and the amount of requested memory. The producer
then exposes harvested memory through fixed-sized slabs dedicated to that consumer. A producer
may stop participating at any time by deregistering with the broker.
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Fig. 5. Memtrade architecture overview.

Broker. The broker arbitrates between producers and consumers, matching supply and de-
mand for harvested remote memory while considering consumer preferences and constraints.
While Memtrade supports untrusted producers and consumers from diverse tenants, its logically-
centralized broker component should be run by a trusted third party – such as a caching-as-a-service
provider [30, 34] or the public cloud operator. The broker facilitates the direct connection between
the consumer and producer using existing virtual private cloud interconnection tools (e.g.AWS
Transit Gateway), which allow the consumer and producer to communicate even if they are on
separate virtual private networks [11, 24]. Note that cloud providers already support this capability.
The broker decides on the per-unit remote memory price for a given lease time, based on monitoring
the current price of spot instances offered in the same public cloud. Appropriate pricing provides
incentives for both producers and consumers to participate in the market; the broker receives a cut
of the monetary transactions it brokers as commission.

To improve the availability of transient remote memory, the broker relies on historical resource
usage information for producers to predict their future availability. It additionally considers producer
reputations, based on the frequency of any prior broken leases, in order to reduce occurrences of
unexpected remote memory revocations. Finally, it assigns producers to consumers in a manner
that maximizes the overall cluster-wide resource utilization.

Consumers. A consumer voluntarily participates in the remote-memory market by registering its
connection credentials with the broker. Once approved by the broker, the consumer can submit a
remote memory request by specifying its required remote memory, lease time, and preferences.
After matching the request with one or more producers, the broker sends a message to the consumer
with connection credentials for the assigned producer(s).

The consumer then communicates directly with assigned producers through a simple KV cache
GET / PUT / DELETE interface to access remote memory. We also implement a transparent remote-
paging interface for the consumer. When memory will be occasionally evicted by producers, and a
the data needs to be stored persistently, a swap interface may face performance issues. Conveniently,
applications using caches assume that data is not persistent, and may be evicted asynchronously.
To ensure confidentiality and integrity of consumer data stored in producer memory, consumer
interfaces offer an optional cryptographically access to remote memory in a transparent manner
(§6.1).
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Algorithm 1 Harvester Pseudocode
1: procedure DoHarvest
2: Decrease cgroup memory limit by ChunkSize
3: 𝑠𝑙𝑒𝑒𝑝 (𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑) ⊲ wait for performance impact
4: procedure DoRecovery
5: while RecoveryPeriod not elapsed do
6: Disable cgroup memory limit
7: procedure RunHarvester
8: for each performance monitor epoch do
9: if no page-in then
10: Add performance data point to baseline estimator
11: Generate baseline performance distribution
12: Generate recent performance distribution
13: if performance drop detected then
14: DoRecovery()
15: else
16: DoHarvest()
17: if severe performance drop detected then
18: Prefetch from disk

4 PRODUCER
The producer consists of two key components: the harvester, which employs a control loop to
harvest application memory, and the manager, which exposes harvested memory to consumers
as remote memory. The producer does not require modifying host-level software, facilitating
deployment in existing public clouds. Our current producer implementation only supports Linux
VMs. The harvester coordinates with a loadable kernel module within the VM to make harvesting
decisions, without recompiling the guest kernel.

The harvester runs producer applications within a Linux control group (cgroup) [15] to monitor
and limit the VM’s consumption of resources, including DRAM and CPU; network bandwidth
is managed by a custom traffic shaper (§4.2). Based on application performance, the harvester
decides whether to harvest more memory or release already-harvested memory. Besides unallocated
memory which is immediately available for consumers, the harvester can increase the free memory
within the VM by reducing the resident set size (RSS) of the application. In harvesting mode, the
cgroup limit is decreased incrementally to reclaim memory in relatively small chunks; the default
ChunkSize is 64 MB. If a performance drop is detected, the harvester stops harvesting and enters
recovery mode, disabling the cgroup memory limit and allowing the application to fully recover.

Because directly reclaiming memory from an application address space can result in performance
cliffs if hot pages are swapped to disk, we introduce Silo, a novel in-memory region that serves
as a temporary buffer, or victim cache, holding harvested pages before they are made available
as remote memory. Silo allows the harvester to return recently-reclaimed pages to applications
efficiently. In addition, when it detects a significant performance drop due to unexpected load,
Silo proactively prefetches swapped-out pages from disk, which helps mitigate performance cliffs.
Algorithm 1 presents a high-level sketch of the harvester’s behavior.

The manager exposes the harvested memory via a key-value cache GET / PUT / DELETE interface,
by simply running a Redis server for each consumer. A key challenge for the manager is handling
the scenario where the harvester needs to evict memory. We leverage the existing Redis LRU
cache-eviction policy, which helps reduce the impact on consumers when the producer suddenly
needs more memory.
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Fig. 6. Memory harvesting and recovery using Silo.

4.1 Adaptive Harvesting of Remote Memory
Monitoring Application Performance. The harvester provides an interface for applications to

periodically report their performance, with a metric such as latency or throughput. Without loss
of generality, our description uses a performance metric where higher values are better. Many
applications already expose performance metrics. For example, applications often periodically
write their throughput, latency, network bandwidth usage, etc. metrics to a log structure. From this
information, we can directly understand the performance variations overtime. For applications
with standard interface for monitoring performance metrics, the harvester can simply leverage
it. Otherwise, the harvester uses the swapped-in page count (promotion rate) as a proxy for
performance [85]. Besides, other Linux features (e.g., Pressure-Stall Information [37]) also provide
insights on an application’s resource usage. One can leverage those information and correlate them
to the application’s performance metric. All of these approaches are transparent to the applications
– Memtrade doesn’t need to modify the application to monitor its performance.

Estimating the Baseline. To determine whether the memory limit should be decreased or increased,
the harvester compares the current application performance metric to baseline values observed
without memory harvesting. Of course, measuring performance without memory harvesting is
difficult while the producer is actively reclaiming memory. To estimate the baseline performance
without harvesting, we use statistics for swap-in events. When there are no swap-in events,
the application has enough memory to run its workload. Therefore, the harvester includes the
performance metric collected during these times as a baseline. An efficient AVL-tree data structure is
used to track these points, which are discarded after an expiration time. Our current implementation
adds a new data point every second, which expires after a 6-hour WindowSize. We found this yielded
good performance estimates; shorter data-collection intervals or longer expiration times could
further improve estimates, at the cost of higher resource consumption (§7.1).

Detecting Performance Drops. To decide if it can safely reduce the cgroup memory limit, the
harvester checks whether performance has degraded more than expected from its estimated baseline
performance. Similar to baseline estimation, the harvester maintains another AVL tree to track
application performance values over the same period.
After each performance-monitoring epoch, it calculates the 99th percentile (p99) of the recent

performance distribution. The harvester assumes performance has dropped if the recent p99 is worse
than baseline p99 by P99Threshold (by default, 1%), and it stops reducing the cgroup size, entering
a recovery state. It then releases harvested memory adaptively to minimize the performance drop.
Different percentiles or additional criteria can be used to detect performance drops.
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Fig. 7. Performance degradation caused by harvesting different amounts of memory with and without Silo
for (a) Zipfian trace running on Redis, and (b) XGBoost training.

Effective Harvesting with Silo. The harvester reclaims memory until a performance drop is
detected. However, some workloads are extremely sensitive, and losing even a small amount of
hot memory can result in severe performance degradation. Also, because the harvester adjusts
the application memory size via a cgroup, it relies on the Linux kernel’s Page Frame Reclamation
Algorithm (PFRA) to make decisions. Unfortunately, PFRA is not perfect and sometimes reclaims
hot pages, even with an appropriate memory limit.
To address these problems, we design Silo, a novel in-memory area for temporarily storing

swapped-out pages. We implement Silo as a loadable kernel module that is a backend for the Linux
frontswap interface [22]. The guest kernel swaps pages to Silo instead of disk, thus reducing the
cost of swapping (Figure 6a). If a page in Silo is not accessed for a configurable CoolingPeriod
(by default, 5 minutes), it is evicted to a slower memory tier (which is disk in a traditional server
setup). Otherwise, an access causes it to be efficiently mapped back into the application’s address
space (Figure 6b). In effect, Silo is an in-memory victim cache, preventing hot pages from being
swapped to slow memory tier. Figure 7 shows that Silo can prevent performance cliffs, allowing
the harvester to avoid significant performance degradation.

When the harvester initially causes some pages to be swapped out to Silo, it cannot determine the
performance impact until the CoolingPeriod ends. As a result, it harvests cautiously, monitoring
the application’s RSS, which is available in the memory stats for its cgroup. If it enters harvesting
mode, triggering the PFRA to move some pages to Silo, then the harvester refrains from further
decreasing the cgroup limit for at least the CoolingPeriod. Afterwards, if performance is still
stable, the harvester may resume decreasing the limit. This ensures that the harvester will not
explore the harvesting size too aggressively without considering the performance impact caused
by any disk I/O.

Handling Workload Bursts. Simply disabling the cgroup memory limit may not prevent perfor-
mance drops in the face of sudden bursts. Memtrade addresses this issue by prefetching previously-
reclaimed pages, proactively swapping them in from slow memory tiers. If the current performance
is worse than all the recorded baseline data points for consecutive epochs, the harvester instructs
Silo to prefetch ChunkSize of the most recently swapped-out pages (Figure 6c). Producers with
a low tolerance for performance degradation and compressible data could alternatively use a
compressed RAM disk [43] instead of a disk-based swap device. This would provide more rapid
recovery, trading off total harvestable memory.
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4.2 Exposing Remote Memory to Consumers
The manager communicates with the broker to report resource availability, and it exposes a KV or
swap interface to consumers. The harvested memory space is logically partitioned into fixed-size
slabs; a slab (by default, 64 MB) is the granularity at which memory is leased to consumers. Different
slabs from the same producer can be mapped to multiple consumers for performance and load
balancing. Upon receiving a message from the broker, the manager create a lightweight producer
store in the producer VM, dedicated to serving remote memory for that consumer.

In Memtrade, the producer store is implemented by running a Redis [33] server within a cgroup
in the producer VM, providing a familiar KV cache interface to consumers. Since an empty Redis
server consumes only 3 MB of memory and negligible CPU, for simplicity, the manager runs a
separate producer store for each consumer. The producer can limit the maximum CPU used by
producer stores via cgroup controls. However, producer-side CPU consumption is typically modest;
YCSB on Redis uses 3.1% of a core on average.

When the lease period expires, before terminating the Redis server, the manager checks with
the broker to determine if the consumer wants to extend its lease (at the current market price).
Otherwise, the producer store is terminated and slabs are returned to the remote memory pool.

Network Rate Limiter. The manager limits the amount of network bandwidth used by each
consumer. We implemented a standard token-bucket algorithm [80] to limit consumer bandwidth.
The manager periodically adds tokens to each consumer bucket, in proportion to its allotted
bandwidth specified in the consumer request for remote memory. Before serving a request, the
producer store checks the consumer’s available token count; if the I/O size exceeds the number of
available tokens, it refuses to execute the request and notifies the consumer.

Eviction. The size of a producer store is determined by the amount of memory leased by each
consumer. Once a producer store is full, it uses the default Redis eviction policy, a probabilistic
LRU approximation [101]. In case of sudden memory bursts, the manager must release memory
back to the producer rapidly. In this scenario, the harvester asks the manager to reclaim an
aggregate amount of remote memory allocated to consumers. The manager then generates per-
consumer eviction requests proportional to their corresponding producer store sizes and employs
the approximate-LRU-based eviction for each producer store.

Defragmentation. The size of KV pairs may be smaller than the OS page size [57, 61, 98], which
means that an application-level eviction will not necessarily free up the underlying OS page if other
data in the same page has not been evicted. Fortunately, Redis supports memory defragmentation,
which the producer store uses to compact memory.

5 BROKER
The Memtrade broker is a trusted third-party that facilitates transactions between producers and
consumers. It can be operated by the cloud provider, or by another company that runs the market
as a service, similar to existing caching-as-a-service providers [30, 34]. Producers and consumers
participate in the remote-memory market voluntarily, by registering their respective credentials
with the broker. Each producer periodically sends its resource utilization metrics to the broker,
which uses the resulting historical time series to predict future remote-memory availability over
requested lease periods. Consumers request remote memory by sending allocation requests to
the broker with the desired number of slabs and lease time, along with other preferences such as
acceptable latency and bandwidth. The broker connects producers and consumers that may reside
in separate virtual private clouds (VPCs) via existing high-bandwidth peering services [24, 41]. The
broker maps consumer requests to producer slabs using an assignment algorithm that satisfies
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consumer preferences, while minimizing producer overhead and ensuring system-wide wellness
objectives (e.g., load balancing and utilization).
In our current implementation, the broker runs on a single node and can handle a market

with thousands of participating VMs (§7.2). Since consumers communicate directly with assigned
producers until their leases expire, even if the broker is temporarily unavailable, the system
can still continue to operate normally, except for the allocation of new remote memory. For
higher availability, the broker state could be replicated using distributed consensus, e.g., leveraging
Raft [20, 100] or ZooKeeper [78]. The Memtrade operator may also run several broker instances,
each serving a disjoint set of consumers and producers (e.g., one broker per region or datacenter).

5.1 Availability Predictor
Remote memory is transient by nature and can be evicted at any time to protect the performance of
producer applications. Hence, allocating remote memory without considering its availability may
result in frequent evictions that degrade consumer performance. Fortunately, application memory
usage often follows a predictable long-term pattern, such as exhibiting diurnal fluctuations [65].
The broker capitalizes on historical time series data for producer memory consumption, predicting
the availability of offered remote memory using an Auto Regressive Integrated Moving Average
(ARIMA) model [76]. Producers with completely unpredictable usage patterns are not suitable for
Memtrade. ARIMA model parameters are tuned daily via a grid search over a hyperparameter space
to minimize the mean squared error of the prediction.

5.2 Remote Memory Allocation
Constraints and Assumptions. While matching a consumer’s remote memory request, the broker

tries to achieve the aforementioned goals under the following assumptions:
1. Online requests: Consumers submit remote memory requests in an online manner. During a

placement decision, new or pending requests may be queued.
2. Uncertain availability: It is unknown exactly how long producer remote memory slabs will remain

available.
3. Partial allocation: The broker may allocate fewer slabs than requested, as long as it satisfies the

minimum amount specified by the consumer.

Placement Algorithm. When the broker receives an allocation request from a consumer, it checks
whether at least one producer is expected to have at least one slab available for the entire lease
duration (§5.1), at a price that would not exceed the consumer budget (§5.3). The broker calculates
the placement cost of the requested slabs based on the current state of all potential producers
with availability, as a weighted sum of the following metrics: number of slabs available at a given
producer, predicted availability (based on ARIMAmodeling), available bandwidth and CPU, network
latency between the consumer and producer, and producer reputation (fraction of remote memory
not prematurely evicted during past lease periods – premature eviction of consumer data hurts a
producer’s reputation). A consumer may optionally specify weights for each of these placement
desirability metrics with its request.
The broker selects the producer with the lowest placement cost, greedily assigning the desired

number of slabs. If the producer cannot allocate the entire request, the broker selects the producer
with the next-lowest cost and continues iteratively until there are no slabs left to allocate or
no available producers. When fewer than the requested number are allocated, a request for the
remaining slabs is appended to a queue. Pending requests are serviced in FIFO order until they are
satisfied, or they are discarded after a specified timeout.
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5.3 Remote Memory Pricing
Remote memory must be offered at a price that is attractive to both producers and consumers,
providing incentives to participate in the remote memory market. Considering the transient nature
of harvested memory, any monetary incentive for leasing otherwise-wasted resources is beneficial
to a producer, provided its own application-level performance is not impacted. This incentive can
help the producer defray the expense of running its VM. A consumer must weigh the monetary
cost of leasing remote memory against the cost of running a static or spot instance with larger
memory capacity. In case if a rack-scale tiered memory system within any private cloud, the goal
for the broker can be better resource utilization while maintaining the service-level agreement
(SLA) for each applications.

In a public cloud setup, the broker sets a price for leasing a unit of remote memory (GB/hour)
and makes it visible to all consumers. Various economic objectives could be optimized (e.g., total
trading volume, total revenue of producers, etc.) If the primary goal is improving cluster-wide
utilization, the broker needs to focus on maximizing the total trading volume that can be achieved
by setting a market-clearing price for remote memory. In this regards, the broker can continuously
monitor the price of different instance types in the same public cloud. Specifically, for a given lease,
the broker can set the per-unit remote memory price to a value below that associated with the
lowest available instance price at that time. On the other hand, if the broker wants to maximize its
cut of the revenue, it will try to optimize the total revenue of producers. By default, we assume,
the broker wants to maximize its profit. Although, one can come up with any complex market
dynamics and plug in their customized policies to achieve the broker’s goal or market economics
as a whole. Memtrade provides the interface to operate on any pricing model to address different
economic objectives. It’s up to its users to choose the appropriate policy.

From a consumer’s perspective, an alternative to Memtrade is running a separate spot instance
and consuming its memory remotely [118]. Thus, to be economically viable to consumers, the
price of remote memory in Memtrade should never exceed the corresponding spot instance price.
For simplicity, the broker initially sets the price for each unit of remote memory to one quarter
of the current market price for a spot instance, normalized by its size. This initial lower price
makes remote memory attractive to consumers. Afterwards, the price is adjusted to approximate
the maximal total producer revenue by searching for a better price locally. In each iteration, the
broker considers the current market price 𝑝 , 𝑝 + Δ𝑝 , and 𝑝 − Δ𝑝 as the candidates for the price
in the next iteration, where Δ𝑝 is the step size (by default, 0.002 cent/GB·hour). Then the broker
chooses the one that generates the maximal total revenue for producers. Our pricing model yields
good performance in real-world traces (§5.4). Of course, alternative price-adjustment mechanisms
can be designed to achieve different economic objectives. One can simply add on their own pricing
model and economic objectives to the broker and enjoy the benefit of Memtrade.

5.4 Pricing Strategy
To study the impact of pricing strategy on the market, we simulate several pricing strategies
with different objectives, such as maximizing the total trading volume, and maximizing the total
revenue of producers. Our baseline sets the remote memory price to one quarter of the current
spot-instance price (Figure 8b). We simulate 10,000 consumers that use Memtrade as an inexpensive
cache. To estimate the expected performance benefit for consumers, we select 36 applications from
the MemCachier trace, generate their MRCs (Figure 17), and randomly assign one to each consumer.
For each consumer, we ensure that local memory serves at least 80% of its optimal hit ratio.
The strategies that maximize total trading volume (Figure 8c) and total producer revenue (Fig-

ure 8d) both adjust the market price dynamically to optimize their objectives. Significantly, when
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Fig. 8. Effects of different pricing strategies. Revenue and trading-volumemaximization both perform similarly.

the remote-memory supply is sufficient, all three pricing strategies can improve the relative hit
ratio for consumers by more than 16% on average (Figure 8e).

We also examine temporal market dynamics using a real-world trace to simulate a total supply of
remote memory which varies over time. We use the idle memory statistics from the Google Cluster
Trace 2019 – Cell C [25] to generate the total supply for each time slot, and assume one Google
unit represents 5 GB of memory. For the spot instance price, we use the AWS historical price series
of the spot instance type r3.large in the region us-east-2b [10]. Figure 9 plots the results. Consistent
with the earlier pricing-strategy results in Figure 8, the max-trading-volume and max-revenue
strategies effectively adjust the market price based on both supply and demand (Figure 9a). The
behavior of all the three pricing strategies with different economic objectives show similar levels
of consistency (Figure 9b–9d).
We also consider a more realistic scenario where consumers consider the probability of being

evicted when using MRCs to calculate their demand. If the eviction probability is 10%, the total
revenue will decrease by 7.6% and 7.1% with the max-trading-volume strategy and the max-revenue
strategy, respectively. Also, the cluster-wide utilization reductions corresponding to the max-
trading-volume strategy and the max-revenue strategy are 0.0% and 5.8% relatively.
In practice, the broker may have no prior knowledge regarding the impact of market price on

consumer demand. In this case, we adjust the market price by searching for a better price locally
with a predefined step size (0.002 cent/GB·hour). Figure 9e demonstrates the effectiveness of this
approach using a simulation with the Google trace; the market price deviates from the optimal
one by only 3.5% on average. Cluster-wide utilization increases from 56.8% to 97.9%, consumer hit
ratios improve by a relative 18.2%, and the consumer’s cost of renting extra memory reduces by an
average of 82.1% compared to using spot instances.
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Fig. 9. Temporal market dynamics with simulated supply time-series from Google Cluster Trace 2019.

6 CONSUMER
A consumer uses remote memory. It first sends its remote memory demand to the broker, based on
the current market price given by the broker and its expected performance benefit. After receiving
an assignment from the broker, the consumer communicates with producers directly during the
lease period. To ensure the confidentiality and integrity of its remote data, the consumer employs
standard cryptographic methods during this communication. Rate-limiting techniques are used to
protect producers from misbehaving or malicious consumers.

The consumer can use either a KV cache or a swap interface, which we built on top of Redis [33]
and Infiniswap [74] clients, respectively. By default, Memtrade uses the key-value interface, because
in contrast to swapping to disk, applications using a KV cache naturally assume cached data can
disappear. We have also found the KV interface performs better than the swap interface (§7.3), due
to the added overhead of going through the block layer when swapping. For the sake of brevity, we
focus our description on the KV interface.

6.1 Confidentiality and Integrity
This section explains how the consumer ensures data confidentiality and integrity during its KV
operations. The subscripts 𝐶 and 𝑃 are used to denote consumer-visible and producer-visible data,
respectively.

PUT Operations. To perform a PUT, the consumer prepares a KV pair (𝐾𝐶 , 𝑉𝐶 ) to be stored at
a remote producer. First, the value 𝑉𝐶 is encrypted using the consumer’s secret key and a fresh,
randomly-generated initialization vector (𝐼𝑉 ). The 𝐼𝑉 is prepended to the resulting ciphertext,
yielding the value 𝑉𝑃 to be stored at the producer. Next, a secure hash 𝐻 is generated for 𝑉𝑃 , to
verify its integrity and defend against accidental or malicious corruption by the producer.
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To avoid exposing the lookup key 𝐾𝐶 , the consumer substitutes a different key 𝐾𝑃 . Since 𝐾𝑃 need
only be unique, it can be generated efficiently by simply incrementing a counter for each new key
stored at a producer. The producer store storing the KV pair can be identified using an index 𝑃𝑖
into a small table containing producer information.
The consumer stores the metadata tuple𝑀𝐶 = (𝐾𝑃 , 𝐻 , 𝑃𝑖 ) locally, associating it with 𝐾𝐶 . While

many implementations are possible, this can be accomplished conveniently by adding (𝐾𝐶 ,𝑀𝐶 ) to
a local KV store, where an entry serves as a proxy for obtaining the corresponding original value.
This approach also enables range queries, as all original keys are local.

GET Operations. To perform a GET, the consumer first performs a local lookup using 𝐾𝐶 to
retrieve its associated metadata 𝑀𝐶 , and sends a request to the producer using substitute key
𝐾𝑃 . The consumer verifies that the value 𝑉𝑃 returned by the producer has the correct hash 𝐻 ; if
verification fails, the corrupted value is discarded. The value 𝑉𝑃 is then decrypted using 𝐼𝑉 with
the consumer’s encryption key, yielding 𝑉𝐶 .

DELETE Operations. To perform a consumer-side eviction, the consumer first removes the meta-
data tuple𝑀𝐶 from its local store. It then sends an explicit DELETE request to the respective producer
store so that the consumer and producer store contents remain synchronized.

Metadata Overhead. In our current prototype, each consumer uses a single secret key to encrypt
all values. Encryption uses AES-128 in CBC mode, and hashing uses SHA-256, both standard
constructions. By default, the integrity hash is truncated to 128 bits to save space. A 64-bit counter
is employed to generate compact producer lookup keys. The resulting space overhead for the
metadata𝑀𝐶 corresponding to a single KV pair (𝐾𝐶 ,𝑉𝐶 ) is 24 bytes; the 𝐼𝑉 consumes an additional
16 bytes at the producer.

For applications where consumer data is not sensitive, value encryption and key substitution are
unnecessary. Such an integrity-only mode requires only the integrity hash, reducing the metadata
overhead to 16 bytes.

6.2 Purchasing Strategy
A consumer must determine a cost-effective amount of memory to lease to meet its application-level
performance goals. In general, it may be difficult to estimate the monetary value of additional
memory. However, when its application is a cache, lightweight sampling-based techniques [77, 115,
117] can estimate miss ratio curves (MRCs) accurately, yielding the expected performance benefit
from a larger cache size.

The consumer estimates the value of additional cache space using the current price-per-hit from
the known cost of running its VM, and its observed hit rate. The expected increase in hits is
computed from its MRC, and valued based on the per-hit price. When remote memory is more
valuable to the consumer than its cost at the current market price, it should be leased, yielding an
economic consumer surplus.

7 EVALUATION
We evaluate Memtrade on a CloudLab [17] cluster using both synthetic and real-world cluster
traces.1 Our evaluation addresses the following questions:
• How effectively can memory be harvested? (§7.1)
• How well does the broker assign remote memory? (§7.2)
• What are Memtrade’s end-to-end benefits? (§7.3)
1Memtrade can be readily deployed on any major cloud provider. We run our evaluation in CloudLab since it is free.
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Total
Harvested

Idle
Harvested

Workload
Harvested

Perf
Loss

Redis 3.8 GB 23.7% 17.4% 0.0%
memcached 8.0 GB 51.4% 14.6% 1.1%
MySQL 4.2 GB 21.7% 7.0% 1.6%
XGBoost 18.3 GB 15.4% 17.8% 0.3%
Storm 3.8 GB 1.1% 1.4% 0.0%
CloudSuite 3.6 GB 2.5% 15.3% 0.0%

Table 1. Total memory harvested (idle and unallocated), the percentage of idle memory, the percentage of
application-allocated memory, and the performance loss of different workloads.
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Fig. 10. VM memory composition over time. Additional results are provided in the appendix as Figure 16 for
the interested.

Experimental Setup. Unless otherwise specified, we configure Memtrade as follows. The producer
averages application-level latency over each second as its performance metric. We generate both
the baseline performance distribution and the recent performance distribution from data points
over the previous 6 hours (WindowSize). If the recent p99 drops below the baseline p99 by more
than 1% (P99Threshold), it is considered a performance drop. Harvesting uses a 64 MB ChunkSize
and a 5-minute CoolingPeriod. If a severe performance drop occurs for 3 consecutive epochs, Silo
prefetches ChunkSize from disk.
Each physical server is configured with 192 GB DRAM, two Intel Xeon Silver 4114 processors

with 20 cores (40 hyperthreads), and a 10Gb NIC. We use Intel DC S3520 SSDs and 7200 RPM SAS
HDDs. We run the Xen hypervisor (v4.9.2) with Ubuntu 18.04 (kernel v4.15) as the guest OS.

Workloads. Consumers run YCSB [64] on Redis [33]. Producers run the following applications
and workloads:
• Redis running a Zipfian workload using a Zipfian constant of 0.7 with 95% reads and 5% updates.
• memcached and MySQL running MemCachier [30, 60] for 36 hours and 40 hours, respectively.
We use 70 million SET operations to populate the memcached server, followed by 677 million
queries for memcached and 135 million queries for MySQL.

• XGBoost [58] training an image classification model on images of cats and dogs [16] using CPU,
with 500 steps.

• Storm [36] running the Yahoo streaming workload [59] for 1.5 hours.
• CloudSuite [26] executing a web-serving benchmark with memcached as the cache and MySQL
as the database, with 1000 users and 200 threads.
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Fig. 11. Prefetching enables faster recovery and better latency during workload bursts. Memory compression
enables even faster recovery, trading off the total amount of harvestable memory.
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Fig. 12. Sensitivity analysis for the harvester. Single-machine experiments using Redis with YCSB Zipfian
constant 0.7.

VM Rightsizing. To detemine the VM size for each workload, we find the AWS instance type [3]
with the minimal number of cores and memory that can fit the workload without affecting its base-
line performance. We use configurations of M5n.Large (2 vCPU, 8 GB RAM) for Redis, M5n.2xLarge
(8 vCPU, 32 GB RAM) for memcached and XGBoost, C6g.2xLarge (8 vCPU, 16 GB RAM) for MySQL,
C6g.xLarge (4 vCPU, 8 GB RAM) for Storm, C6g.Large (2 vCPU, 4 GB RAM) for CloudSuite, and
T2.xLarge (4 vCPU, 16 GB RAM) for consumer YCSB.

7.1 Harvester
Effectiveness. To observe the effectiveness of the harvester, we run the workloads with their

respective producer configurations. For Redis, memcached, and MySQL we use average latency
to measure performance. Since XGBoost, Storm, and Cloudsuite do not provide any real-time
performance metric, we use the promotion rate (number of swapped-in pages) as a proxy for
performance.

We find that Memtrade can harvest significant amounts of memory, even from right-sized VMs
(Table 1). Here, a notable portion of the total harvested memory is extracted from the application’s
idle memory (on average, 1.1–51.4% across the entire workload) at a lower performance degradation
cost of 0–1.6%. Also, a whole-machine, all-core analysis shows that the producer-side CPU and
memory overheads due to the harvester were always less than 1%.

Figure 10 plots memory allocation over time for two representative workloads, and shows that for
workloads such as MemCachier with varying access patterns (Figure 10a), the harvester dynamically
adjusts the amount of harvested memory. For most workloads, the percentage of idle harvested
memory is higher at the end of the run. Therefore, we expect that if we ran our workloads longer,
the average percentage of idle harvested memory would only increase.

Impact of Burst-Mitigation Techniques. To observe the effectiveness of the harvester during
workload bursts, we run YCSB on Redis using a Zipfian distribution (with constant 0.7). To create a
workload burst, we abruptly shift it to a uniform distribution after one hour of the run. Figure 11
shows the average latency and p99 latency using different burst-mitigation approaches. When
enabled, Silo prefetches harvested pages back into memory, which helps the application reduce its
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recovery time by 28.6% and 65.5% over SSD and HDD, respectively. Although prefetching causes a
higher peak p99 latency on HDD due to contending with swapping I/O, this high tail latency is
transient and the application can recover much faster. A compressed RAM disk exhibits minimal
performance drop period during the workload burst (68.7% and 10.9% less recovery time over
prefetching from SSD and HDD, respectively), at the cost of less harvested memory.

Sensitivity Analysis. We run YCSB over Redis with a Zipfian constant of 0.7 to understand the
effect of each parameter on harvesting and producer performance. Each parameter is evaluated
in an isolated experiment. Figure 12 reports the results, using average performance to quantify
degradation.
The Silo CoolingPeriod controls the aggressiveness of harvesting (Figure 12a). Setting it too

high leads to less harvesting, while setting it too low causes performance drops that eventually
also leads to less harvested memory.

Both the harvesting ChunkSize (Figure 12b) and the P99Threshold (Figure 12c) affect harvesting
aggressiveness in a less pronounced way. The amount of harvested memory increases with more
aggressive parameters, while the performance impact always remains below 1%. The performance-
monitoring WindowSize does not significantly change either the harvested memory or performance
(Figure 12d).

7.2 Broker Effectiveness
To evaluate the effectiveness of the broker, we simulate a disaggregated memory consumption
scenario by replaying two days worth of traces from Google’s production cluster [25]. Machines
with high memory demand – often exceeding the machine’s capacity – are treated as consumers.
Machines with medium-level memory pressure (at least 40% memory consumption throughout the
trace period) are marked as producers. When a consumer’s demand exceeds its memory capacity,
we generate a remote memory request to the broker. We set the consumer memory capacity to
512 GB, the minimum remote memory slab size to 1 GB, and a minimum lease time of 10 minutes.
In our simulation, 1400 consumers generate a total of 10.7 TB of remote memory requests within
48 hours. On the producer side, we simulate 100 machines.

On average, the broker needs to assign 18 GB of remote memory to the producers per minute.
Our greedy placement algorithm can effectively place most requests. Even for a simulation where
producers have only 64 GB DRAM, it can satisfy 76% of the requests (Figure 13a). With larger
producers, the total number of allocations also increases. As expected, Memtrade increases cluster-
wide utilization, by 38% (Figure 13b).

Availability Predictor. To estimate the availability of producer memory, we consider its average
memory usage over the past five minutes to predict the next five minutes. ARIMA predictions
are accurate when a producer has steady usage or follows some pattern; only 9% of the predicted
usage exceeds the actual usage by 4%. On average, 4.59% of the allocated producer slabs get revoked
before their lease expires.

7.3 Memtrade’s Overall Impact
Encryption and Integrity Overheads. To measure the overhead of Memtrade, we run the YCSB

workload over Redis with 50% remote memory. Integrity hashing increases remote memory access
latency by 24.3% (22.9%) at the median (p99). Hashing and key replacement cause 0.9% memory
overhead for the consumer. Due to fragmentation in the producer VM, the consumer needs to
consume 16.7% extra memory over the total size of actual KV pairs. Note that this fragmentation
overhead would be same if the consumer had to store the KVs in its local memory.
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Fig. 14. Benefit of Memtrade with various configurations. Without Memtrade, remote requests are served
from SSD.

Encryption and key substitution increase latency by another 19.8% (14.7%) at the median (p99).
Due to padding, encryption increases the memory overhead by another 25.2%. Fragmentation in the
producer VM causes 6.1% memory overhead. Note that for trusted producers, or for non-sensitive
consumer data, encryption can be disabled.

Application-Level Performance. We run YCSB over Redis with different consumer VM configura-
tions and security modes. The consumer memory size is configured such that Redis needs at least
x% (𝑥 ∈ {0, 10, 30, 50, 100}) of its working set to be in remote Memtrade memory. If remote memory
is not available, the I/O operation is performed using SSD.
For the 0% configuration, the entire workload fits in the consumer VM’s memory, and is fully

served by its local Redis. Figure 14 shows that an application benefits from using remote memory
as additional cache instead of missing to disk. For the fully-secure KV cache interface, Memtrade
improves average latency by 1.3–1.9×, and p99 latency by 1.5–2.1×. In the case of non-sensitive
data with only integrity checks, Memtrade provides 1.45–2.3× and 2.1–2.7× better average and p99
latencies, respectively.

We also implemented a transparent swap-based consumer interface, built on top of Infiniswap [74].
When consuming remote memory via fully-secure remote paging, Memtrade’s performance drops
due to hypervisor swapping overhead – average and p99 latency drop by 0.95–2.1× and 1.1–3.9×,
respectively. However, given a faster swapping mechanism [95, 103] or faster network (e.g., RDMA),
Memtrade swap is likely to provide a performance benefit to consumers.

Cluster Deployment. To measure the end-to-end benefit of Memtrade, we run 110 applications on
CloudLab – 64 producer and 46 consumer VMs, randomly distributed across the cluster. Producers
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run six workloads described earlier, while consumers run YCSB on Redis, configured with 10%,
30%, and 50% remote memory. The total consumer and producer memory footprints are 0.7 TB and
1.3 TB, respectively; our cluster has a total of 2.6 TB. Memtrade benefits the consumers even in
a cluster setting (Table 2). Memtrade improves the average latency of consumer applications by
1.6–2.8×, while degrading the average producer latency by 0.0–2.1%.

8 DISCUSSION
Network Stack. As public cloud environments are typically virtualized, inter-VM networking

incurs additional latency due to traversing both kernel and hypervisor networking stacks. As shown
in Figure 15, kernel-bypass networking (e.g., DPDK, RDMA) offers lower latency in virtualized
environments; with RDMA and SR-IOV, the additional overhead is minimal compared to bare-metal
machines. Unfortunately, RDMA is not widely available in existing public clouds. While DPDK is
slower than RDMA, it still achieves single-digit 𝜇𝑠 latencies for small objects. However, it consumes
an excessive amount of CPU due to polling (nearly 100% of local CPU for larger objects), which
would require producers to have extremely idle CPU resources to be practical.
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Fig. 15. Network latency using VMs vs. bare-metal
hosts for various protocols and different object sizes.

CXL [18] is a new processor-to-
peripheral/accelerator cache-coherent
interconnect protocol that builds on and
extends the existing PCIe protocol by allowing
coherent communication between the con-
nected devices.2 It provides byte-addressable
memory in the same physical address space
and allows transparent memory allocation
using standard memory allocation APIs. It
also allows cache-line granularity access
to the connected devices and underlying
hardware maintains cache-coherency and
consistency. With PCIe 5.0, CPU-to-CXL
interconnect bandwidth is similar to the cross-socket interconnects on a dual-socket machine [124].
CXL-Memory access latency is also similar to the NUMA access latency. CXL adds around 50-100
nanoseconds of extra latency over normal DRAM access.
Because of its universal availability, Memtrade currently uses TCP networking, despite its

relatively high overhead and other limitations. For deployments in private clouds, replacing TCP
with RDMA or even CXL-enabled rack-servers would improve performance significantly.

Consumer Abstractions. Memtrade is designed considering the readily deployability feature for
most of the common usages in existing cloud infrastructure. To hold its ubiquitousness, we design
the consumer APIs thinking TCPs as the most common network medium. Although it needs some
re-write or modification to the consumer applications, on TCP networks, caching applications
can usually sustain the network communication overhead. Swapping to remote memory can be a
viable and transparent abstraction for consumer applications [56, 88, 95]. However, to maintain the
performance while remote swapping, we need to ensure the network stack is at least as performant
as RDMA over Infiniband. With faster and next-generation cache-coherent CXL interconnects, we
are confident on Memtrade’s applicability. In such a setup, we can design more transparent and

2Prior industry standards in this space such as CCIX [14], OpenCAPI [31], Gen-Z [23] etc. have all come together under
the banner of CXL consortium. While there are some related research proposals (e.g., [87]), CXL is the de facto industry
standard at the time of writing this paper.
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Producer
Application

Avg. Latency (ms) Consumer
Application

Avg. Latency (ms)
w/o

Harvester
w/

Harvester
w/o

Memtrade
w/

Memtrade
Redis 0.08 0.08 Redis 0% 0.62 –
Memcached 0.82 0.83 Redis 10% 1.10 0.71
MySQL 1.57 1.60 Redis 30% 1.54 0.88
Storm 5.33 5.47 Redis 50% 2.49 0.89
Table 2. Memtrade benefits consumers at a small cost to producers.

performant interfaces to the consumers to consume remote memory efficiently. OS level features
(i.e., migration-based page placement [96]) can be utilized to design new consumer APIs.

9 RELATEDWORK
Remote Memory. Existing work on remote-memory-enabled datacenter [47, 48, 51, 71, 74, 75,

79, 82, 85, 91, 99, 103, 108] assume that memory is contained within the same organization and
shared among multiple cooperative applications. Given the large amount of idle memory and diverse
consumer applications and workloads, public clouds serve as a promising environment to exploit
remote memory.

Public Cloud Spot Marketplaces. Amazon AWS, Microsoft Azure, and Google Cloud offer spot
instances [35] – a marketplace for unutilized public cloud VMs that have not been reserved, but
have been provisioned by the cloud provider. AWS allows customers to bid on spot instances
while Azure and Google Cloud [32, 38] sell them at globally fixed prices. Prior work explored the
economic incentives for spot instances [45, 46, 54, 70, 73, 111, 112, 118, 121, 123, 125]. However,
they used full spot instances to produce memory; Memtrade is more generic, enabling fine-grained
consumption of excess memory from any instance type.

Single-Server Memory Management. Reclaiming idle memory from applications has been explored
in many different contexts, e.g., physical memory allocation across processes by an OS [44, 63, 66],
ballooning in hypervisors [106, 110, 116], transcendent memory for caching disk swap [92–94], etc.
Our harvesting approach is related to application-level ballooning [105]. However, in most prior
work, applications belong to the same organization while Memtrade harvests and grants memory
across tenants. Multi-tenant memory sharing [46, 62, 70] has considered only single-server settings,
limiting datacenter-wide adoption.

Resource Autoscaling and Instance Rightsizing. Cloud orchestration frameworks and schedulers [7,
28, 49, 107, 113] can automatically increase or decrease the number of instances based on the task
arrival rate. However, users still need to statically determine the instance size before launching a
task, which may lead to resource overprovisioning.

Instance rightsizing [39, 50, 52, 104, 119] automatically determines the instance size based on a
task’s resource consumption. In existing solutions, cloud providers are fully responsible for resource
reclamation and performance variability in producer VMs.Memtrade is by designmore conservative:
producers can generate and reclaim memory capacity at any time. Even with rightsizing, servers
may have idle memory that can be harvested and offered to consumer VMs.

Memory Harvesting. Harvesting unused resources of a traditional server or VM is a concern in
many hyperscale datacenters [69, 109]. Earlier research mostly focus on the unallocated memory
of a VM as the harvesting target. However, besides that unallocated memory, there are significant
amount of memory that has been allocated to an application; the application used that for a while;
and then, remained unutilized for a significant amount of time [85, 89, 96, 120]. Memtrade harvester
considers all kind of idle memory.
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10 CONCLUDING REMARKS
We present Memtrade, a readily deployable system for the realization of disaggregated memory
marketplace on existing clouds. With the rising popularity of serverless and disaggregated storage,
there will be increased demand for offering disaggregated computing resources in public clouds,
and our work attempts to apply a similar approach to memory. This opens several interesting
research directions for future work, including exploring whether other resources, such as CPU and
persistent memory, can be offered in a similar manner via a disaggregated-resource market.
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Fig. 16. Unallocated represents the part of memory not allocated to the application; harvested means the
portion of application’s memory which has been swapped to disk; Silo denotes the part of memory used by
Silo to buffer reclaimed pages; RSS consists of application’s anonymous pages, mapped files, and page cache
that are collected from the cgroup’s stats file.
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