
48  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE

Miniature Cache Simulations for Modeling
and Optimization

W e present a surprisingly simple technique that accurately models
the behavior of a cache with any policy by simulating a scaled-
down miniature cache with a small, spatially hashed sample of

requests. We also demonstrate how to leverage such models to optimize
caches dynamically, using scaled-down simulations to explore multiple cache
configurations simultaneously.

Caches are ubiquitous in modern computing systems, improving system performance by
exploiting locality to reduce access latency and offload work from contended storage systems
and interconnects. A wide variety of caches have been implemented in hardware and soft-
ware, clients and servers, storage arrays, key-value stores, and other system infrastructure.

By definition, a cache is a small, fast memory backed by larger, slower storage. As a result,
cache space is inherently scarce, and methods that can better utilize this space are extremely
valuable. Techniques for accurate and efficient cache modeling are especially important for
informing cache allocation and partitioning decisions, optimizing cache parameters, and
supporting goals including performance, isolation, and quality of service.

However, caches are notoriously difficult to model. It is well known that performance is
non-linear in cache size due to complex effects that vary enormously by workload. Although
recent research has produced practical models for LRU caches, there has been no general,
lightweight solution for more sophisticated policies, such as ARC [7], LIRS [4], and 2Q [5].

Modeling Caches with MRCs
Cache utility curves plot a performance metric as a function of cache size. Figure 1 shows an
example miss-ratio curve (MRC), which plots the ratio of cache misses to total references for
a workload (y-axis) as a function of cache size (x-axis). The miss ratio generally decreases as
cache size increases, although complex algorithms such as ARC and LIRS can exhibit non-
monotonic behavior due to imperfect dynamic adaptation.

MRCs are valuable for analyzing cache behavior. Assuming a workload exhibits reason-
able stationarity at the time scale of interest, its MRC can also predict future performance.
Thus, MRCs are powerful tools for optimizing cache allocations to improve performance and
achieve service-level objectives.

Mattson et al. introduced a method for constructing MRCs for stack algorithms—for example,
LRU, LFU, etc.—that yields the entire MRC for all cache sizes in a single pass over a trace [6].
Efficient modern implementations of this algorithm have an asymptotic cost of O(N log M)
time and O(M) space for a trace of length N containing M unique blocks. Recent approxima-
tion techniques can construct accurate MRCs with dramatically lower costs than exact
methods. In particular, SHARDS [9] and AET [3] require only O(N) time and O(1) space, with
a tiny footprint of approximately 1 MB. However, for more complex non-stack algorithms,
such as ARC and LIRS, there are no known single-pass methods. As a result, separate runs
are required for each cache size, similar to pre-Mattson modeling of LRU caches.

Carl Waldspurger is an
Independent Consultant and
Technical Advisor, collaborating
on research and development
projects with several companies.

Carl has a PhD in computer science from MIT
and has served as program chair for USENIX
ATC, FAST, and VEE. His research interests
include resource management, virtualization,
caching, computer architecture, and security.
carl@waldspurger.org

Trausti Saemundsson is a
Software Engineer at Google
working on datacenter software.
He has an MSc in computer
science from Reykjavik

University in Iceland. His research interests are
systems, analytics, caching, machine learning,
security, and optimizations. He has papers
published at SoCC, USENIX ATC, and GLBIO.
trauzti@gmail.com

Irfan Ahmad is the founder of
CachePhysics. Irfan works on
interdisciplinary endeavors
in memory, storage, CPU,
and distributed resource

management. He has published at ACM,
USENIX, and IEEE. He has served as program
chair for HotCloud, HotStorage, and HotEdge.
mr.irfan@gmail.com

Nohhyun Park is a Software
Engineer at DatosIO working on
data protection for distributed
databases. He has a PhD
in electrical and computer

engineering from the University of Minnesota
and is interested in workload characterization
and performance modeling for large-scale
systems. nohhyun.park@datos.io

C A R L A . W A L D S P U R G E R , T R A U S T I S A E M U N D S S O N , I R F A N A H M A D , A N D N O H H Y U N P A R K

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 49

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

Miniature Simulation
The main idea behind miniature simulation is to approximate
the behavior of a large cache by simulating a tiny one that pro-
cesses only a tiny sample of its requests. Typically, the cache size
and the input reference stream are both scaled down by several
orders of magnitude.

A mini-simulation runs the full, unmodified cache replacement
algorithm, making it possible to model any caching algorithm,
including even ad hoc modifications often found in production
systems. The miss ratio and other metrics are determined by
simply extracting the usual statistics from the mini-cache, such
as counts of misses and references. An adjustment that instead
uses the expected number of references reduces bias due to sam-
pling error significantly [8].

The reference stream is scaled down by using hashing to ran-
domly sample the key space. A reference is sampled only when
the hash value of its associated key is smaller than a threshold
T that defines the sampling rate R. This approach is similar to
our earlier work on SHARDS and is also related to sharding in
distributed databases. Depending on the cache, a key may be
a memory address, a logical block number for disk storage, or
a string, as in a key-value store. The effectiveness of scaling
depends on statistical self-similarity—that a randomized sample
is fairly representative of the whole. As we will see, this is a good
assumption that holds well in practice.

Figure 2 depicts a full-size cache and its input references, along
with two scaled-down versions. To randomly sample the input,
simple temporal sampling, such as flipping a coin for each refer-
ence, doesn’t work. We must ensure that all references to the
same key are always sampled or we will be blind to reuses that
are central to caching behavior. Instead, randomized spatial
sampling is implemented by selecting references based on deter-
ministic hashes of their keys. In the figure, hash values are rep-

resented visually with shading. Scaling down by a factor of two
results in a cache with half the size, and an input stream from
half the key space, for example, by sampling a key only when the
high-order bit of its hash is zero, shown as yielding half of the
original shades. Similarly, scaling down by a larger factor of 128
shrinks both the cache size and the key space more dramatically.

Scaling the key space and the cache size by the same amount
maintains the same pressure on a mini-cache as the full-size
cache, so it should exhibit approximately the same behavior. A
cache of size S can be emulated by scaling down the cache size to
R ⋅ S and scaling down the reference stream using a hash-based
spatial filter with sampling rate R. In practice, sampling rates
on the order of R = 0.01 or R = 0.001 yield very accurate results,
achieving huge reductions in space and time compared to a con-
ventional full-size simulation.

More generally, scaled-down simulation need not use the same
scaling factor for both the miniature cache size and its reference
stream. The emulated cache size Se, mini-cache size Sm, and
input sampling rate R are related by Se = Sm / R. Thus, Se may be
emulated by specifying a fixed rate R, and using a mini-cache
with size Sm = R ⋅ Se, or by specifying a fixed mini-cache size
Sm and sampling its input with rate R = Sm / Se. In practice, it is
useful to enforce reasonable constraints on the minimum mini-
cache size (e.g., Sm ≥100) and sampling rate (e.g., R ≥ 0.001) to
ensure sufficient cache space and enough sampled references to
simulate meaningful behavior.

Scaled-Down MRCs
For non-stack algorithms, there are no known methods capable
of constructing an entire MRC in a single pass over a trace.
Instead, MRC construction requires a separate run for each
point on the MRC, corresponding to multiple discrete cache
sizes. Fortunately, we can leverage miniature caches to emulate
each size efficiently.

We evaluate the accuracy and performance of our approach with
three diverse non-LRU cache replacement policies: ARC [7],
LIRS [4], and the theoretically optimal OPT [2]. We use a col-
lection of 137 real-world storage block trace files, similar to the

C A R L A . W A L D S P U R G E R , T R A U S T I S A E M U N D S S O N , I R F A N A H M A D , A N D N O H H Y U N P A R K

Figure 1: Example MRC. Miss-ratio curve for a production disk block trace
using the ARC cache algorithm. The ratio of cache misses to total refer-
ences is plotted as a function of cache size.

Figure 2: Scaling Down. Both the cache size and input reference stream
are scaled down by factors of 2 and 128; each exhibits similar behavior.
Only keys that fall within a subset of the hash space are sampled.

50  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

SHARDS evaluation [9]. These represent 120 week-long virtual
disk traces from production VMware environments collected by
CloudPhysics, 12 week-long enterprise server traces collected
by Microsoft Research Cambridge, and five day-long server
traces collected by FIU. For our experiments, we use a 16-KB
cache block size, and misses are read from storage in aligned,
fixed-size 16-KB units. Reads and writes are treated identically,
effectively modeling a simple write-back caching policy.

Accuracy
For each trace, we compute MRCs at 100 discrete cache sizes,
spaced uniformly between zero and a maximum cache size. To
ensure these points are meaningful, the maximum cache size is
calculated as the aggregate size of all unique blocks referenced
by the trace.

Figure 3 contains 12 small plots that illustrate the accuracy
of approximate MRCs with R = 0.001 on example traces with
diverse MRC shapes and sizes. In most cases, the approximate
and exact curves are nearly indistinguishable. In all cases,
miniature simulations model cache behavior accurately, includ-
ing complex non-monotonic behavior by ARC and LIRS. These
compelling results with such diverse algorithms and workloads
suggest that scaled-down simulation is capable of modeling
nearly any caching algorithm.

To quantify accuracy, we compute the difference between the
approximate and exact miss ratios at each discrete point on the
MRC, and aggregate these into a mean absolute error (MAE)
metric, as in related work [9, 3]. The box plots in Figure 4 show
the MAE distributions for ARC, LIRS, and OPT with sampling
rates R = 0.01 and R = 0.001. The average error is surprisingly
small in all cases. For R = 0.001, the median MAE for each

 algorithm is below 0.005, with a maximum of 0.033. With R = 0.01,
the median MAE for each algorithm is below 0.002, with a maxi-
mum of 0.012.

Performance
For our performance evaluation, we used a platform configured
with a six-core 3.3 GHz Intel Core i7-5820K processor and 32 GB
RAM, running Ubuntu 14.04. Experiments compare traditional
exact simulation with our lightweight scaled-down approach. In
all cases, simulations track only metadata, and do not store data
blocks.

Resource consumption was measured using our five largest
traces. We simulated three cache algorithms at five emulated
sizes Se (8 GB, 16 GB, 32 GB, 64 GB, and 128 GB), using multiple

Figure 3: Example Mini-Sim MRCs. Exact and approximate MRCs for 12 representative traces. Approximate MRCs are constructed using scaled-down
simulation with sampling rate R = 0.001. Each line type represents a different cache algorithm.

Figure 4: Error Analysis. Distribution of mean absolute error for all 137
traces with three algorithms (ARC, LIRS, OPT) at two different sampling
rates (R = 0.01, R = 0.001).

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 51

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

sampling rates R (1, 0.1, 0.01, and 0.001) for a total of 60 experi-
ments per trace.

Unsurprisingly, the memory footprint for cache simulation is a
simple linear function consisting of fixed overhead (for policy
code, libraries, etc.) plus variable space. For ARC and LIRS, the
variable component is proportional to the cache size, R ⋅ Se. For
OPT, which must track all future references, it is proportional
to the number of sampled references, R ⋅ N. Table 1 reports the
fixed and variable components of the memory overhead deter-
mined by linear regression (r 2 > 0.99). As expected, accurate
results with R = 0.001 require 1000x less space than full simula-
tion, excluding the fixed overhead.

We also measured the CPU usage consumed by our single-
threaded cache implementations with both exact and scaled-
down simulations for ARC, LIRS, and OPT. The runtime
consists of two main components: cache simulation, which is
roughly linear in R, and sampling overhead, which is roughly
constant; each reference must be hashed to determine if it should
be sampled. The scaled-down simulation with R = 0.001 requires
about 10x less CPU time than full simulation, and achieves
throughput exceeding 53 million references per second for ARC
and LIRS, and 39 million references per second for OPT. Fortu-
nately, for multi-model optimization, hash-based sampling costs
are incurred only once, not for each mini-cache. In an actual pro-
duction cache, the cost of data copying would dwarf the hashing
overhead. Moreover, a separate hash for sampling isn’t needed
if one is already available; storage caches and key-value stores
typically hash keys for performing lookups.

Cache Optimization
A single cache instance runs with a single policy and a single set
of configuration parameters. Unfortunately, policy and parame-
ter tweaking is typically performed only at design time, consid-
ering few benchmarks.

Low-cost online modeling allows efficient instantiation of
multiple concurrent models with different cache configurations,
offering a powerful framework for dynamic optimization. Quan-
tifying the impact of hypothetical parameter changes allows the

best settings to be applied to the actual cache. Such a multi-
model approach can optimize cache block size, write policy,
algorithm-specific tunables, or even replacement policy.

Lightweight MRCs can also guide efficient cache sizing,
allocation, and partitioning for both individual workloads and
complex multi-workload environments. For example, Talus [1],
which requires an MRC as input, can remove performance cliffs
within a single workload and improve cache partitioning across
workloads.

Adapting Cache Parameters
As illustrated in Figure 5, our multi-model optimization frame-
work leverages miniature simulations to evaluate the impact of
different candidate parameter values. The best setting is applied
to the actual cache periodically. We have implemented optimiza-
tions that adapt tunable parameters automatically for two well-
known cache policies, LIRS [4] and 2Q [5], but we discuss only
the LIRS results; the results for 2Q are similar [8].

While MRCs are typically stable over short time periods, they
frequently vary over longer intervals. To adapt dynamically
to changing workload behavior, we divide the input reference
stream into a series of epochs. Our experiments use epochs
consisting of one million references, although many alternative
definitions based on wall-clock time, evictions, or other metrics
are possible.

After each epoch, we calculate an exponentially weighted mov-
ing average (EWMA) of the miss ratio for each mini-cache to
balance historical and current cache behavior. Our experiments
use an EWMA weight of 0.2 for the current epoch. The param-
eter value associated with the mini-cache exhibiting the lowest
smoothed miss ratio is applied to the actual cache for the next
epoch.

LIRS Adaptation
We adapt the size of the LIRS S stack, which controls the num-
ber of metadata-only ghost entries that are tracked [4], by setting
f, a parameter that specifies the size of S as a fraction of the over-

Table 1: Memory Footprint. Memory usage for ARC and LIRS is linear in
the cache size, R ⋅ Se, while for OPT, it is linear in the number of sampled
references, R ⋅ N. Measured values are shown for CloudPhysics trace t22
with Se = 64 GB.

Linear Function Example Trace (t22)
Policy Fixed Variable R=.001 R=1
ARC 1.37 MB 71 B 1.57 MB 284 MB

LIRS 1.59 MB 75 B 1.80 MB 301 MB

OPT 7.10 MB 37 B 19.55 MB 18,519 MB

Figure 5: Online Optimization. Simultaneous miniature simulations enable
automatic selection of the best parameter setting.

52  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

all cache [8]. For each workload, five scaled-down simulations
are performed with different values for f: 1.1, 1.5, 2.0, 2.5, and 3.0.
Each simulation emulates the same cache size, equal to the size
of the actual cache, with a fixed sampling rate R = 0.005. After
each epoch consisting of one million references, the miss ratios
for each mini-cache are examined, and the best f value is applied
to the actual cache.

Figure 6 presents the best-case and worst-case results across
the 12 MSR traces. The goal of automatic LIRS adaptation is to
find the best value of f for each cache size. These ideal static set-
tings form an MRC that traces the lower envelope of the curves
for different static f values, plotted as the dashed curve. Simi-
larly, the dotted curve shows the MRC with the pessimal static f
setting at each cache size. The auto-adapted results for msr_src2
hug the ideal lower envelope closely at nearly all cache sizes. In
contrast, msr_proj deviates from the ideal for many cache sizes,
but still does well for others. We are currently experimenting
with techniques that automatically disable adaptation when it is
ineffective.

SLIDE
SLIDE (Sharded List with Internal Differential Eviction) is a
completely different cache optimization technique that leverages
scaled-down MRCs constructed by running miniature simula-
tions. SLIDE was inspired by Talus [1], a powerful technique
introduced in the computer architecture community for set-
associative processor caches. Talus removes performance cliffs
using interpolation to effectively operate at a point on the convex
hull of an MRC—the shape formed by stretching a rubber band
across the bottom of the curve. In the presence of cliffs, the large
gap between an MRC and its convex hull represents a significant
optimization opportunity.

Talus uses hash-based partitioning to divide the reference
stream for a single workload into two shadow partitions, alpha
and beta, which operate as separate sub-caches. Each partition is
made to emulate the performance of a smaller or larger cache by
controlling its size and its input load, represented by the fraction
of the reference stream it receives. Talus requires the workload’s
MRC as an input and computes the partition sizes and their
respective loads in a clever manner that ensures their combined
aggregate miss ratio lies on the convex hull of the MRC. We view
the hash-based partitioning employed by Talus for optimization
and our hash-based monitoring for efficient modeling as two
sides of the same coin. Both rely on the property that hash-based
sampling produces a smaller reference stream that is statisti-
cally self-similar to the original stream.

One key challenge with applying Talus to non-stack algorithms
is constructing MRCs efficiently at runtime. Fortunately,
scaled-down models provide a convenient solution. As with
parameter adaptation, we divide the input reference stream into
a series of epochs. After each epoch, we construct a discretized
MRC from multiple scaled-down simulations with different
cache sizes, smoothing each miss ratio using an EWMA. We
then identify the subset that forms the convex hull for the MRC,
and compute the optimal partition sizes and loads using the
same inexpensive method as Talus.

Non-LRU Shadow Partitioning Challenges
In theory, combining scaled-down MRCs with Talus shadow
partitioning can improve the performance of any caching policy
by interpolating efficient operating points on the convex hulls of
workload MRCs. In practice, it was much more difficult than we
expected to apply Talus to caching algorithms such as ARC and
LIRS.

Talus requires distinct cache instances for its alpha and beta
partitions, which have a fixed aggregate size. This hard division
becomes problematic in systems where partition boundaries
change dynamically as MRCs evolve over time. Similarly, when
per-partition input loads change dynamically, some cache entries
may reside in the “wrong” partition based on their hash values.

Eager strategies, such as removing cache entries when decreas-
ing the size of a partition or migrating entries across partitions
to ensure each resides in the correct partition, perform poorly
since migration is expensive and data may be evicted from one
partition before the other needs the space. Moreover, it’s not
clear how migrated state should be integrated into its new parti-
tion, since list positions are not ordered across partitions.

Lazy strategies for reallocation and migration fare better but
complicate the core caching logic. More importantly, while
migrating to the MRU position on a hit seems reasonable for an

Figure 6: Adaptive Parameter Tuning. Dynamic optimization selects
good values for the LIRS f parameter at most sizes with potential gains.
The msr_src2 and msr_proj workloads show the best- and worst-case
results for the MSR traces.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 53

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

LRU policy, it’s not clear how to merge state appropriately for
more general algorithms.

Transparent Shadow Partitioning
Faced with these challenges, we developed SLIDE. In contrast to
Talus, SLIDE maintains a single unified cache and defers parti-
tioning decisions until eviction time, conveniently avoiding the
resizing, migration, and complexity issues discussed above.

A SLIDE list is a new abstraction that serves as a drop-in
replacement for the standard LRU list used as a common
building block by many sophisticated algorithms. Since SLIDE
interposes on primitive LRU operations that add, reference, and
evict entries, it is transparent to cache replacement decisions.
An unmodified algorithm can support Talus-like partitioning
by simply relinking to substitute SLIDE lists for existing ones.
We have optimized ARC (T1, T2, B1, and B2), LIRS (S and Q), 2Q
(Am, A1in, and A1out), and LRU in this manner.

SLIDE extends a conventional doubly linked LRU list, which
remains totally ordered from MRU (head) to LRU (tail). Each
entry is augmented with a compact hash of its key, which is
compared to a current threshold that dynamically classifies it
as belonging to either the alpha or beta “partition.” Additional
state supports efficient SLIDE versions of all list operations [8].
SLIDE preferentially evicts from the tail of the over-quota
partition.

It is not obvious that substituting SLIDE lists for internal lists
will approximate Talus partitions. The basic intuition is that
configuring each internal list with identical SLIDE partition
sizes and input loads effectively divides the occupancy of each
individual list—and therefore the entire aggregate algorithm
state—to achieve the desired split between alpha and beta. While
SLIDE may differ from strict Talus partitioning, it empirically
works well for ARC, LIRS, 2Q, and LRU.

Experiments
For each workload, a separate experiment is performed at 100
cache sizes. For each size, a discrete MRC is constructed via
multiple scaled-down simulations with sampling rate R = 0.005.
SLIDE is reconfigured after each one million-reference epoch,
using an EWMA weight of 0.2.

Seven emulated cache sizes are positioned exponentially around
the actual size, using relative scaling factors of 1/8, 1/4, 1/2, 1,
2, 4, and 8. For R = 0.005, the mini-cache metadata is approxi-
mately 8% of the actual metadata size (R times the sum of the
scaling factors), representing less than 0.04% of total memory
consumption for an actual cache. Alternative configurations
provide different tradeoffs between time, space, and accuracy.

Figure 7 plots some example results of SLIDE performance
cliff reduction for LIRS and ARC policies with workloads that
exhibit cliffs. Ideally, SLIDE would trace the convex hull of the
original MRC. In practice, this is not attainable, since the MRC
evolves dynamically, and its few discrete points yield a crude
convex hull. Nevertheless, for these examples, SLIDE captures a
significant fraction of the potential gain, represented by the area
between the MRC and its convex hull: 69% for LIRS and 38% for
ARC. For workloads with MRCs that are already mostly convex,
there is little opportunity for improvement, so SLIDE typically
yields marginal benefits.

Conclusion
We have explored the use of miniature caches for modeling and
optimizing cache performance. Compelling experimental results
demonstrate that scaled-down simulation works extremely well
for a diverse collection of complex caching algorithms—includ-
ing ARC, LIRS, and OPT—across a wide range of real-world
traces. This suggests our technique is a robust method capable of
modeling nearly any cache policy accurately and efficiently.

Lightweight modeling has many applications, including online
analysis and control. We presented a general method that runs
scaled-down simulations to evaluate hypothetical configura-
tions, and applied it to optimize tunable cache policy parameters
automatically. We also introduced SLIDE, a new transparent
technique that performs Talus-like performance cliff removal.

Miniature caches offer the tantalizing possibility of improving
performance for most caching algorithms on most workloads
automatically. We hope to make additional progress in this
direction by exploring opportunities to refine and extend our
optimization techniques.

Figure 7: SLIDE Cliff Reduction. Scaled-down MRCs are constructed dy-
namically from seven mini-cache simulations. SLIDE improves miss ratios
for LIRS and ARC at most sizes with potential gains but does exhibit some
regressions.

54  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

References
[1] N. Beckmann and D. Sanchez, “Talus: A Simple Way to
Remove Cliffs in Cache Performance,” in Proceedings of the
21st International Symposium on High Performance Computer
Architecture (HPCA-21) (February 2015): https://people.csail
.mit.edu/sanchez/papers/2015.talus.hpca.pdf.

[2] L. A. Belady, “A Study of Replacement Algorithms for Virtual
Storage Computers,” IBM Systems Journal, vol. 5, no. 2 (1966),
pp. 78–101: http://users.informatik.uni-halle.de/~hinnebur
/Lehre/Web_DBIIb/uebung3_belady_opt_buffer.pdf.

[3] X. Hu, X. Wang, L. Zhou, Y. Luo, C. Ding, and Z. Wang, “Kinetic
Modeling of Data Eviction in Cache,” in Proceedings of the 2016
USENIX Annual Technical Conference (ATC ’16), pp. 351–364:
https://www.usenix.org/conference/atc16/technical-sessions
/presentation/hu.

[4] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Refer-
ence Recency Set Replacement Policy to Improve Buffer Cache
Performance,” in Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’02), pp. 31–42: http://web
.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers
/TR-02-6.pdf.

[5] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” in
Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB ’94), pp. 439–450: http://www.vldb.org/conf
/1994/P439.PDF.

[6] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evalu-
ation Techniques for Storage Hierarchies,” IBM Systems Jour-
nal, vol. 9, no. 2 (June 1970), pp. 78–117.

[7] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” in Proceedings of the 2nd
 USENIX Conference on File and Storage Technologies (FAST
’03), pp. 115–130: http://www2.cs.uh.edu/~paris/7360
/PAPERS03/arcfast.pdf.

[8] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park,
“Cache Modeling and Optimization Using Miniature Simula-
tions,” in 2017 USENIX Annual Technical Conference (ATC ’17),
pp. 487–498: https://www.usenix.org/system/files/conference
/atc17/atc17-waldspurger.pdf.

[9] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad,
“Efficient MRC Construction with SHARDS,” in Proceedings
of the 13th USENIX Conference on File and Storage Technologies
(FAST ’15), pp. 95–110: https://www.usenix.org/system/files
/conference/fast15/fast15-paper-waldspurger.pdf.

https://people.csail.mit.edu/sanchez/papers/2015.talus.hpca.pdf
https://people.csail.mit.edu/sanchez/papers/2015.talus.hpca.pdf
http://users.informatik.uni-halle.de/~hinnebur/Lehre/Web_DBIIb/uebung3_belady_opt_buffer.pdf
http://users.informatik.uni-halle.de/~hinnebur/Lehre/Web_DBIIb/uebung3_belady_opt_buffer.pdf
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-02-6.pdf
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-02-6.pdf
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-02-6.pdf
http://www.vldb.org/conf/1994/P439.PDF
http://www.vldb.org/conf/1994/P439.PDF
http://www2.cs.uh.edu/~paris/7360/PAPERS03/arcfast.pdf
http://www2.cs.uh.edu/~paris/7360/PAPERS03/arcfast.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-waldspurger.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-waldspurger.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-waldspurger.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-waldspurger.pdf

NSDI focuses on the design principles, implementation, and practical evaluation of networked and dis-
tributed systems. The symposium provides a high-quality, single-track forum for presenting results and
discussing ideas that further the knowledge and understanding of the networked systems community as
a whole, continue a significant research dialog, or push the architectural boundaries of network services.

The program includes three days of technical sessions, a poster session, and evening Birds-of-a-Feather
sessions (BoFs).

Register by March 19 and save!

April 9–11, 2018 • Renton, WA, USA

15th USENIX Symposium on Networked Systems
Design and Implementation18

Register Now!

www.usenix.org/nsdi18

18 13th USENIX Symposium on Operating Systems
Design and Implementation

October 8–10, 2018 • Carlsbad, CA, USA
OSDI brings together professionals from academic and industrial backgrounds in what has become a

premier forum for discussing the design, implementation, and implications of systems software. The

OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences in

systems design and implementation.

Abstract registrations are due April 26, 2018.

Program Co-Chairs:
Andrea Arpaci-Dusseau, University of Wisconsin—Madison

 and Geoff Voelker, University of California, San Diego

Save the Date!

www.usenix.org/osdi18

