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Abstract

This thesis presents the design and implementation of an open, market-based compu-
tational system called Spawn. The Spawn system utilizes idle computational resources
in a distributed network of heterogeneous computer workstations. It supports both
coarse-grained concurrent applications and the remote execution of many unrelated
tasks. Using concurrent Monte-Carlo simulations as prototypical applications, the
thesis explores issues of scaling, the fairness of resource distribution, price equilibria,
and the dynamics of transients. In addition to serving the practical goal of harness-
ing processor idle-time in a computer network, Spawn has proven to be a valuable
experimental workbench for studying the dynamics of computational markets and
distributed systems with no global controls.
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Chapter 1

Introduction

Recent advances in computational technology have led to a proliferation of powerful
networked computers that form large distributed systems. These systems can be ap-
plied to a wide variety of tasks, such as distributed problem-solving, interacting with
the physical world, and interpreting real-time multi-sensor data. Such tasks generally
require adaptability to unexpected events. They must be capable of coping with im-
perfect and conflicting information from many sources, and acting before all relevant
information is available. Imprecise and inconsistent information can arise not only
from hardware limitations but also from computations using probabilistic methods,
heuristics, rules with many exceptions, or learning resulting in overgeneralization.
Similarly, delays in receiving needed information can be due to the time required to
fully interpret signals in addition to physical communication delays.

A major difficulty in fully utilizing such systems is managing the complexity of
the required software, especially the need to coordinate many tasks on multiple pro-
cessors. As larger parallel machines and networks are developed, simple centralized
allocation of tasks becomes increasingly ineffective. This is due to the fact that data
in the world is distributed and rapidly changing. A central controller cannot access
all of the information needed to effectively plan detailed hehavior, even if sufficient

computational power is available. Instead, reliability and rapid response to local
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changes require autonomous, local control of resources. We are thus confronted with
the challenge of developing schemes for decentralized resource allocation.

The emergence of large, decentralized systems raises some fundamental questions
[Hew85, Hew86]. Basically, there is a need for a general theoretical guide to the
behavior of large collections of locally-controlled, asynchronous and concurrent pro-
cesses interacting with an unpredictable environment. In particular, this requires
understanding the relation between the overall behavior of a systcm and that of its
constituents, whose decisions are based upon local, imperfect, delayed, and conflicting
information. These characteristics, which are also found in social and biological com-
munities, lead us to refer to this collection of interacting processes as computational
ecosystems. This form of computation is also called epen because the closed-world
assumption of traditional computer science is no longer valid [Hew85].

Given this similarity, it is not surprising that there has been some speculation con-
cerning the efficacy and desirability of market mechanisms in distributed computer
networks. Since market devices such as prices and auctions greatly facilitate resource
management in human societies, one might expect them to be similarly useful in com-
puter networks — a proposal which has beer elaborated in some detail [Mil88]. A price
mechanism could allow machines with different capabilities to have different values,
enabling tasks to flexibly devote their currency to the resources most important for
them.

To date, there have been a number of computational schemes developed with this
analogy in mind. Recent work on microeconomic algorithms [Fer88] has determined
that they can achieve globally effective allocation of CPU time which is comparable,
and in some cases superior, to traditional algorithms. Moreover, such decentralized
economic algorithms are often more modular and less complex than conventional
load-balancing techniques. An earlier system, named Enterprise, also incorporated
algorithms motivated by economics. Enterprise [Mal88] is a particularly interesting

market-like scheduler that uses a bidding mechanism to allocate independent tasks at
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run-time among remote, idle processors. However, Enterprise employed & scheduling
priority scheme rather than a price mechanism, making it impossible to assess the
efficacy of using a uniform medinm of exchange that allows agents to reason indepen-
dently about their strategies. Also, the absence of prices made it difficult to study
the dynamics of the system - in particular, whether or not the system was in equi-
librium. Finally, the absence of modern hardware support for multi-processing (e.g.,
separate per-process address spaces) made the system highly vulnerable to changes,
intentional or unintentional, that agents produced in the state of the machines.
Despite the intuitive appeal of the economic approach to open cornputational
systems, few empirical or quantitative theoretical results exist to confirm or deny
its suitability. Several differences between human economies and proposed com-
puter systems based on similar principles bring the analogy into question. First,
human decision-making is notoriously difficult to quantify. Preferences are often non-
transitive or based upon considerations other than those believed to be the relevant
performance criteria. In addition, human beings are extraordinarily diverse in their
opinions and methods for making decisions, a fact which can lead to more stability
in human economies than in potentially less-diverse computational networks [Kep89].
Moreover, decisions made by computers can take place in times which are orders of
magnitude faster than those of human decisions. Recent work [Kep88, Hub88, Kep89]
suggests that the time-scale on which decisions are made has a strong effect on the
dynamics of the system. These studies of computational ecosystems also indicate
the existence of several other phenomena, such as large-amplitude oscillations and
chaotic behavior, that might have detrimental effects on the performance of open sys-
tems. Even if these issues are resolved, there remain the practical questions of how
many computational processes are needed in order to exhibit meaningful market-like
behavior and how to exploit knowledge of their behavior to efficiently manage them.
In order to understand the behavior of a computational economy, we designed

Spawn, an open, market-based computational system that runs in a distributed net-
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work of heterogeneous high-performance computer workstations. It provided us with
a chance to study such a system in actual use, thereby ailowing us to guide its design
and reformulate our notions of appropriate performance criteria in response to our
observations. Having noted that a significant amount of computer equipment sits idle
for large fractions of every day, we designed Spawn to allow users with large processing
requirements to effectively tap these otherwise wasted resources. If we view such an
environment as a large multiprocessor instead of a collection of independcent networked
workstations, Spawn supports both coarse-grained concurrent applications (parallel
processing) and the remote execution of many unrelated tasks (multi-tasking).

We have implemented useful Spawn applications in both of these categories, pri-
marily in the realm of concurrent Monte-Carlo simulations and remote document
formatting. Large-scale concurrent Monte-Carlo simulations are « significant class
of applications which can make use of idle CPU time. These simnulations are fre-
quently used to understand the behavior of systems with many cegrees of freedom,
such as matter in its various states, ecosystems, and economic models. Although
these Monte-Carlo simulations are typically performed on expensive supercomputers,
they can easily be parallelized, making them a natural candidate for distributed com-
putation. Other potential applications of Spawn include remote compiiation and the
concurrent computation of graphic frames for computer animation. As will become
apparent, Spawn has satisfied our two-pronged research goal: not only does it allow
us to harness the idle-time of a computer network, but it has also proven to be a valu-
able experimental workbench for studying computational markets and the dynamical
behavior of open systems.

In the next chapter, we describe the basic mechanisms underlying the implemen-
tation of Spawn. In chapter 3 we present and discuss the results of a number of
quantitative experiments in which the system parameters were varied in order to as-
sess their influence on its overall behavior. These experiments were supplemented by

simulations of Spawn which provide insight into how its behavior scales for large net-
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works. Chapter 4 examines work related to this thesis in greater detail than the brief
references made in this section. Finally, we conclude that market-like resource allo-
cation methods based on a price mechanism can work effectively in a real distributed
system, and highlight opportunities for further research. Two appendices are pro-
vided. Appendix A contains the specifications for the Spawn library routines, and

Appendix B presents a detailed description of a sample distributed Spawn application.



Chapter 2

The Spawn System

2.1 Overview

At a very high level of description, Spawn is organized as a market economy composed
of interacting buyers and sellers. The commodities in this economy are computer
processing resources, specifically slices of CPU time on various types of computer
workstations in a distributed computational environment. This chapter describes the
main features of this system.

Buyers are users who wish to purchase time in order to perform some computation.
Sellers are users who wish to sell unused, otherwise-wasted processing time on their
computer workstations. A concrete example of a buyer is a scientist who wants to run
a large Monte-Carlo simulation. A typical seller is a user who is not actively using his
personal workstation. Neither buyers nor sellers need to be physically co-present with
their machines in order to participate in the Spawn economy. A seller can execute an
auction process to manage the sale of his workstation’s computational resources, and
a buyer may execute an application that manages the purchase and use of computer
processing resources.

Spawn was designed to support three kinds of tasks. The first consists of existing

applications which cannot be modified for use with Spawn. An example of such black

13
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bor applications is a document formatter. The second class, homogeneous tasks, con-
sist of arbitrarily many identical subtasks with limited and uniform communication
among the components. Monte-Carlo calculations are a prototypical example. The
third, and most general, category consists of hetcrogeneous tasks in which the de-
gree of parallelism and nature of the communication are completely controlled by the

application.

2.2 System Processes:
Auctions and Resource Managers

The sale of resources is handled by a set of system processes on each machine, as
shown in Figure 2-1. An auction process controls the sale of an idle workstation’s
resources, and handles messages from processes wishing to purchase slices of its time.
An auction continuously accepts bids on the nezt available slice of time; i.e., a block of
time beginning after the termination of the slice purchased by the currently executing
application. A bid consists of a length of time, a quantity of funds, and a briet task
description. An auction follows a bid-processing strategy defined by the values of
parameters set by the seller who initiated it. These parameters include the minimum
and maximum allowable time slice lengths that can be sold, and a function which
expresses the auction’s utility function in terms of slice length, current bids, and other
market values. For example, depending on market conditions, an auction process may
decide to give discounts or charge premiums for purchases of long time slices. A simple
strategy, used throughout this paper, is a linear function relating cost to time slice
length. [n practice, a bounded range of allowable time slice lengths is used to ensure
that processes execute long enough to amortize start-up overhead, but not so long
that a user returning to his “idle” workstation would be inconvenienced while waiting

for client processes to terminate.



CHAPTER 2.

THE SPAWN SYSTEM

RESOURCE MANAGER

APPLICATION MANAGER APPLICATION WORKER

Figure 2-1: Selling Time

The auction process handles bids and status queries. When the auction accepts
a bid, it instructs the resource manager to execute the corresponding application
manager. The application can then arrange to spawn workers and submanagers
via the resource manager.
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It is worth noting that our auctions operate as sealed-bid, second-price auctions.
“Sealed” means that bidding agents cannot access information about other agents’
bids, and “second-price” indicates that the amount paid by the winning agent is the
amount offered by the next-highest competitive bidder.! This type of auction provides
an incentive for agents to bid the amount that a time slice is actually worth to them,
and has proved very effective in human markets [Fri84]. A sealed-bid, second-price
auction leads to market prices similar to those which would be created by a familiar
first-price auction where agents continually try to marginally outbid the current high
bidder.? In our system, an auction does not commit to a bidder until the last possible
moment; it accepts the highest bidder’s task at the price set by the second-highest
bidder when the current time slice is about to end.3

Associated with each auction is a resource manager process. The resource manager
serves as an interface between high-level applications and the rest of the Spawn system.
In addition, the resource manager is responsible for initiating and monitoring the
execution of the application process that purchased the current slice of processor
time.

A high-level user application should not be encumbered with decision-making
concerning the low-level market mechanisms that locate, schedule, and purchase the
resources necessary for its execution. At the same time, however, it should be possible
for an application to exert some control over the general allocation of its funds to
allow for more sophisticated strategies. The Spawn architecture provides a vniform

mechanism with these capabilities. The resource manager process encapsulates low-

IMore specifically, suppose that agents A and B are the current highest and second-highest
bidders, respectively, on a particular auction. If agent C then submits a bid greater than that of
A, it will become the new highest bidder. The second-highest bid will be recorded as that of A if
C and A are allowed to compete; otherwise, the second-highest bid will be remain that of B. The
precise distinction between “competitive” and “friendly” agents is explained in Section 2.3.

?We have experimented with first-price “English” auctions and found that they yield approxi-
mately the same results as sealed-bid second-price auctions, but incur a much higher computational
cost due to the increased communication overhead.

3Note that if there is no second-highest bidder, the price is zero; i.e., in the absence of competition,
resources are free.
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level details about auctions and bidding procedures, and communicates with a set of
nearby auction processes. Each resource manager maintains a list of “neighboring”
auctions which supply information about their current selling prices. This list is
easily modified, and has allowed us to experiment with a variety of interconnection
topologies. Normally each machine is only connected to a small number of other
machines, demanding highly decentralized decision-making with no global state or
controls.

If an application consumes more resources than it has purchased, the resource
manager forcibly terminates it. To avoid terminating an application process before
it has completed (e.g., due to an inaccurate processing time estimate), an applica-
tion is given a right of first refusal before the next time slice is sold. That is, the
currently-executing application is allowed to continue its execution as long as it can
pay the going market price for extensions. This capability is provided because termi-
nated processes are not allowed to be restarted and cannot migrate.* It is thus the
application’s burden to ensure that important computations are well-funded and to

cope with failure due to aborted computations.

2.3 Application Processes:
Managers and Workers

Applications are divided into manager and worker modules. An application worker is
the primary computational task for which resources have been allocated. It is essen-
tially a black box application, except that it may communicate to its manager. Each
application worker has a corresponding manager process. An application manager
coordinates the execution of some task in a distributed application. It arranges, via

communication with the resource manager interface, to spawn child workers and sub-

4These constraints are imposed by the programming environment which we used to implement
Spaun. A detailed discussion of related implementation issues can be found in Section 2.5.
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USER

7N

ROOT SPAWN USER INTERFACE
APPLICATION MANAGER and BANK ACCOUNT

RESOURCE MANAGER

\
QUERIES BIDS FUNDS

/

Figure 2-2: Buying Time

The user invekes a root application manager which registers itself with Spawn.
The application can be controlled by interacting with the root or directly by
issuing commands to the Spawn system’s user interface. The resource manager
interacts with the rest of the system to provide the required services.

managers responsible for various subtasks. The application manager thus contains
the interface of the application to the Spawn system. A special root application man-
ager resides on the top-level user’s personal workstation and serves as a user-interface
for a distributed computation.

The simplest Spawn applications are black-box applications. A root application
manager requests the execution of a single remote task and provides some amount
of funding to pay for it. When the local resource manager has won a bid on an

affordable auction, the remote task (corsisting of both an application manager and
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an application worker) is run. The application worker is a black-box task which does
not directly interact with the Spawn system. Its corresponding application manager
is a simple process which captures any output generated by the worker and sends it
back to the root for display on the user’s personal workstation.

A more typical application worker performs intensive computation and period-
ically reports partial results or error conditions to its immediate manager. This
manager then combines and processes incoming partial results and sends aggregate
results up to the next higher level in the management tree. If partial results can
be combined at each level of management, such progress reports can be efficiently
combined in a concurrent, decentralized manner. Managers of decomposable tasks
may also choose to spawn additional children to manage subtasks. This process is
shown in Figure 2-3.

To create a local worker process, an application manager sends a spawn-worker
message to its local resource manager. This message contains an abstract task name,
a list of task arguments, and a network directory pathname. The use of abstract
task names provides a level of indirection which facilitates the execution of tasks in
a heterogeneous computing environment. A task name refers to a set of mappings,
specified in a task file, which maps particular workstation configurations onto the
binary executable files which implement the named task for that configuration. A
task file also defines application-specific ratings for each possible configuration. This
information enables applications to specify the relative efficiency of executing a task
on different hardware configurations, and is used by the resource manager to find the
best match between a task and the resources for sale in the current computational
market.

To create a remote manager for processing a subtask, an application manager
sends a spawn-manager message to the resource manager. This message contains the
information carried by a spawn-worker message, as well as several parameters that

the resource manager needs in order to find resources for the task’s execution. These
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TOP-LEVEL APPLICATION
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@_/ USER INTERFACE

APPLICATION SUBTASK

COMBINING

APPLICATION SUBSUBTASK

\\ APPLICATION SUBSUBTASK

Figure 2-3: Application Reports

Workers (W) report to their local managers (M), who in turn make reports to
the next higher level of management. Upper management combines data into
aggregate reports. Finally, the root manager presents results to the user.

20
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include a specification of the relative importance of service time versus price, and the
estimated processing time for the task (normalized to a machine with an application-
specific rating of unity). An application manager may avoid the introduction of
unwanted competition (e.g., between two cooperating subtasks) by specifying user and
group identifications that should be considered “friendly” when bidding on time for
new subtasks. Such tasks are not considered to be competitors by auction processes.

Application processes can easily send application-specific (i.e., opaque to the
Spawn system) messages to their parent managers. Managers receiving messages
from children can combine the information that they contain to deliver aggregate
reports to higher management. Of course this feature need not be used; for example,

black box applications never send messages to their managers.

2.4 Sponsors and Funding

The concept of sponsored computations was pioneered by researchers who were con-
cerned with the development of linguistic constructs for the allocation of resources in
actor programming systems [The83, Man87). Spawn extends and refines the notion
of sponsorship in the context of a market-based computational economy. In Spawn,
managers serve as funding sponsors for their children, dynamically controlling the rel-
ative percentage of funding allocated to each child. A simple manager strategy would
be to allocate equal amounts of funding to each child; more sophisticated strategies
may take the relative progress achieved by each child into account. In this way, Spawn
provides basic support for the use of heuristics similar to the “interestingness” metric
employed by Eurisko [Len83] for guiding exploratory computations.

Relative allocation of funds provides a clean high-level framework for sponsorship.
The Spawn sponsorship hierarchy can be visualized as a tree of pipes, in which funds
flow from the root node of an application to its managers. Each manager corresponds

to a branch point in the tree consisting of a single input pipe, a reservoir, and a
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variable-width output pipe for each of its children. To control the relative amount of
funding flowing to individual children and the amount of funding retained by itself,
a manager can adjust the widths of its output pipes and the size of its reservoir. The
top-level manager for a computation controls the total amount of funding which is
pumped into the root of the sponsorship hierarchy. Since funding cannot be continu-
ous, the root node delivers it in discrete drops, which split into finer drops at branch
points. The flow of funds is illustrated in Figure 2-4.

For example, consider a homogeneous task that can spawn a large number of
similar subtasks. A simple, effective manager strategy would be to fund each child
equally. Since the overall application can be viewed as a tree of managers with
a branching factor greater than one, it is clear that funds introduced by the root
manager will be subdivided and ultimately delivered to the leaves of the management
tree. Since each leaf is actively bidding to spawn additional tasks, the distributed
computation will be able to expand to more machines when prices are low and will
be forced to shrink back to fewer machines when the market is not as favorable. A
more intelligent manager could decide to heavily fund those children which are most
productive or cost-effective.

This view of sponsorship networks greatly simplifies many issues related to funding
by removing low-level details such as absolute funding amounts and the need for com-
plex funding request and evaluation protocols. Nevertheless, we recognize that some
sophisticated maragers may be able to make better decisions when provided access
to such low-level knowledge. Our current system allows managers to make explicit
requests for detailed information to the local resource manager when necessary.

At the highest level, the allocation of funds to users is negotiated by human system
administrators. Some users are able to earn the funds they spend by selling unused
time on their personal workstations. Special provisions are needed for users with
processing requirements that far exceed their earning potentials. The integration of

the Spawn economy with human organizations raises many interesting issues.
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(a)

APPLICATION MANAGER

CONTROLS

4

d SUBTASK FUNDING

Figure 2-4: Flow of Funds

(a) The auction at a seller node receives payments and deposits them in its bank
account. The selier can finance its own applications through this account.

(b) An application’s sponsor continually adds funds whose distribution is con-
trolled by the application manager.

23
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2.5 Implementation

Spawn runs on a network of heterogeneous Unix workstations. Such networks are
becoming increasingly popular in both corporate and academic computing environ-
ments. The protection mechanisms offered by modern workstations (e.g., separate,
PerI-process memory address spaces and other support for multi-processing) obviate
many technical difficulties that plagued prior implementations of related systems such
as Enterprise [Mal88] and Worms [Sho82]. A network of Unix workstations provides
a minimal substrate upon which Spawn can be successfully implemented. Ideally, we
would prefer to take advantage of a sophisticated distributed operating system and
a programming language designed for open systems [Tan85, Ras88, Kah8s, Lis88,
Man87]. Unfortunately, these tools are neither generaily nor uniformly available on
the existing machines and networks which we use; many are still research prototypes.
Note that our computing environment imposed several limitations on the scope of
the Spawn project. Since Spawn executes as an ordinary user-mode Unix application,
process creation is an expensive operation, and processes are unable to migrate be-
tween machines. This limits us to Very coarse-grained processes. Because we were not
able to use a programming language designed for robust concurrent and distributed
computation, we decided to limit the scope of our applications to those that could be
easily parallelized and expressed using extensions to existing serial languages (such
as C and FORTRAN).

At the computational level, all Spawn processes communicate via an asynchronous
message-passing protocol. Since processes may be short-lived (by design or due to
lack of funds), Spawn provides a mechanism for dynamic re-routing of messages and
a facility for the delegation of responsibility. Every workstation that participates
in the Spawn economy executes a router process that maintains a cache of defunct
processes and their “forwarding addresses”. Message sends which result in errors may
use the router to deliver messages to a forwarding address. Before terminating, an

application manager may delegate responsibility for its children to any other manager
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in the sponsorship hierarchy; typically it will delegate to its own immediate sponsor.

There are two major shortcomings in the present Spawn implementation. First,
Spawn does not provide applications with robust recovery in the event of failure.
User computations can be aborted due to machine failure or insufficient funding;
it is currently the responsibility of applications to recover from such failures. A
much better solution would be for Spawn to utilize a substrate for reliable distributed
computation that provides robust recovery from failure by using atomic transactions
[Lis83, Par83). Second, Spawn is not secure. Although reasonable safeguards and
checks have been included, no attempt has been made to protect the Spawn economy
from malicious users intent upon forging currency or deliberately cheating agents.
The secure use of money in computational economies is an important research topic
that we have not addressed [Mil87, Kah89].

Spawn is written in the C programming language and utilizes the Sun RPC and
NFS protocols for networked computing. Spawn has been successfully tested on net-
works containing Unix workstations manufactured by Sun Microsystems (Sun 3, Sun
4) and Digital Equipment Corporation (VAX family). It is in experimental use on

numerous Sun workstations at Xerox PARC.



Chapter 3

Experiments

In order to evaluate the Spawn system, we have conducted a number of experiments
which served to quantify its ability to make use of idle machines, distribute resources
among competing tasks, and respond to a changing environment. These experiments
were based on an asynchronous Monte-Carlo simulation which we ran concurrently
in a network of Sun workstations.

The Monte-Carlo algorithm was chosen because it is paradigmatic of simulation
techniques requiring great amounts of CPU time and is readily converted into a par-
allel algorithm. Because of the limited need for communication among processes, it is
easy to create a collection of processes that can replicate themselves into an arbitrary
number of machines. Monte-Carlo is a probabilistic algorithm which computes aver-
age properties of systems [Sob75]. It consists of a large number of independent trials
of a system, each in a differect configuration. The desired average is then computed
over the ensemble of these independent trials. Moreover, since errors in the computed
averages are inversely proportional to the square root of the number of trials, accurate
results require a large number of trials. This technique has been successfully used in a
number of applications, including the numerical evaluation of integrals, determining
the behavior of complicated states of matter, and exploring interactions in ecosystems

and economics.
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Monte-Carlo is an ideal algorithm for our purposes, as it easily decomposes into an
arbitrary number of subtasks, each performing a number of independent trials. Thus,
it allows a siinple tradeoff between longer computations using a few machines versus
many short ones employing numerous processors. In order to avoid unnecessary price
competition we made the processes involved in a single Monte-Carlo task friendly;
i.e., no price competition occurs between them.

In this chapter we first study the utilization of idle machines, and determine the
fairness of resource distribution. We then investigate the behavior of price equilibria
and their fluctuations. Finally, we study the appearance of price differentials in
heterogeneous systems. These studies are conducted by first considering small, easy
to understand, fully-connected networks, and then examining larger, more sparsely
connected ones. This is important in order to establish the scaling properties of these
systems to very large sizes. This last point is underscored by simulations of Spawn’s

pricing behavior for large configurations.

3.1 Use of Idle Machines

The first experiment measured the efficiency with which idle machines are used in
Spawn. To do this we introduced one Monte-Carlo task into a network of otherwise
idle machines. Each application manager tried to spawn two submanagers and did not
ask for extensions. As this task executed, it spawned processes in all of the available
machines. We then measured the number of trials in the Monte-Carlo task executed
per second as a function of the number of such machines in the networx. Figure
3-1 shows the resultant speeds compared to those which could have ideally been
attained by running independent Monte-Carlo tasks on the same set of machines.
These latter speeds were computed by measuring the speed on individual Sun4/110’s
and Sun4/260’s (11,000 and 14,700 trials/sec., respectively). Because of the negligible

communication overhead in Monte Carlo, we observe a linear relationship; the slope
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Figure 3-1: Spawn Performance

Number of Monte-Carlo trials per second calculated by Spawn vs. total number
of trials/sec. that could be performed concurrently on independent machines for
1,2,...,9 machines. The time slices were all 60 sec. The best linear fit indicates
that Spawn operates with 89.7% efficiency (i.e., 10.3% overhead) for this partic-
ular task and granularity size. When the time slices are doubled to 120 sec., the
overhead drops to 7.6%.

of approximately 0.9 essentially characterizes the efficiency of the Spawn system.
The efficiency can be increased by several percent by increasing the length of the
timeslice and eliminating runtime diagnostics. Thus, Spawn is effectively able to run

decomposable, homogeneous tasks on otherwise idle machines.

3.2 Fairness of Resource Distribution

In order to test the distribution of resources when there are competing tasks executing
in Spawn, we measured the resource utilization with multiple versions of the Monte-
Carlo task used above, given various initial funding ratios. All of the agents used a
“money is no object” strategy: they :d on the auction that was slated to begin its

next timeslice the earliest. The results for a number of representative examples are
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Figure 3-2: Fairness of Resource Allocation

Fairness of Spawn for various funding ratios among tasks. All experimental runs
were performed on Sun4/110’s using 60 sec. time slices. The runs lasted between
20 and 30 minutes. The first set compares the allocated time to the funding ratio
for six fully-connected machines. In these runs, the agents declined extensions
and children were funded equally. The second set is for twelve machines each
connected to four others in a regular grid to form a torus. In this case the agents
accepted extensions and funded children based on cost and performance.

summarized in Figure 3-2.

As we can sea from the table, the auction mechanism allocates time in a manner
that is reasonably close to the funding ratio in all runs. Moreover, this fairness of
allocation is usually observed throughout the entire run. We thus expect a proper
response in more complex situations; for example, where tasks are continually entering
and leaving the system or where tasks are funded dynamically based upon partial
results. An example of the latter case is an application which provides tasks with
most of their funds near the heginning of a computation to get a rough estimate, then
pays less for further accuracy, 2s can be appropriate in Monte-Carlo calculations. For
these runs we have observed efficiencies between 80% and 90%. The higher figure is
obtained when there is no competition; i.e., when there is only one root task in the

system.

3.3 Prices

Since Spawn uses currency and prices as its basic mechanism for resource allocation,

we are interested in how close it comes to behaving like a market; i.e., whether a.
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meaningful market price for processor time can be established and sustained, even
when relatively few machines and tasks are involved. If such a price can be estab-
lished, does it respond in a reasonable and timely way to changes in the number of
buyers and sellers, and to variations in their strategies? In this section, we experi-
mentally examine the existence of equilibrium prices, transients, and fluctuations. We
also investigate the effects of heterogeneous processing elements on prices in Spawn’s

computational economy.

3.3.1 Equilibrium

The simplest case that we consider involves a fully-connected network of homogeneous
machines (i.e., each machine is equally valued by the tasks). Each agent placed a bid
on the auction which was slated to finish first, and bid elsewhere only upon receiving a
rejection notice. Figure 3-3 shows how the price, averaged over all machines, changed
as a function of time. As can be seen, a reasonable equilibrium was reached in
the sense that the fluctuations were relatively small compared to the average. In
equilibrium, the total rate at which currency enters the system (here $0.06/sec) ought
to equal the rate at which the auctions collect revenue. Since there are six auctions,
we expect the average price to be $0.01/sec, which matche. the measured average.

The fluctuations in the average price in Figure 3-3 (the standard deviation mea-
sured from ¢t = 400 to ¢ = 1200) were approximately 13%. These can be attributed
to the small number of processes participating in the experiment. A closer analysis
revealed that, within each of the six auctions, the fluctuations are in the vicinity of
25%.

In addition, we examined the behavior when the network was less densely con-
nected, a characteristic of large networks. For these experiments, the application
managers allocated some of their funding for extensions, enabling them to persist for
several time slices. This allowed the management hierarchy to become deeper, and

facilitated the spread of tasks to distant nodes in the network.
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Figure 3-3: Price Equilibrium: Full Connectivity

Average price as a function of time in a network with six fully-connected ma-
chines. Funding is supplied every 10 seconds to three tasks A, B, and C in the
amounts $0.30, $0.20, and $0.10, respectively, and the length of each time-slice
is 60 seconds. Thus the total rate at which money enters the system is $0.06/sec.
Measuring the average price between ¢ = 400 and ¢ = 1200 sec., we find that
the average price = $0.0098/sec, with standard deviation $0.0013/sec.
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When machines had few connections to one another, employing the simple fund-
ing strategy used earlier (equal funding to each child) led to a significant difference in
prices among the machines. This was due to the limited ability of the highly funded
roots to provide funds to distant submanagers. Where there is a persistent price
difference across machines, clever managers should be able to take advantage of the
situation by spending their money on the less expensive ones. If several clever man-
agers compete against one another, we would then expect the price differentials to
disappear as the prices on less expensive machines are bid up by the smart managers
looking for a bargain.

To address the problem of price differentials, a more sophisticated funding strat-
egy was developed for the applications. Instead of funding each child equally, those
ckildren running on cheaper machines were given the funding. This strategy elimi-
nated the price difference; the resulting behavior is shown in Figure 3-4. The ability
to balance prices merely by changing an application’s funding strategy illustrates the

flexibility of the market mechanism.

3.3.2 Transients

In addition to obtaining meaningful prices, the system should adapt to changes in
load. In order to determine how long it takes the average price to stabilize after a
new task is added to the system, we first introduced two of the Monte-Carlo tasks
described above, waited for the establishment of equilibrium, and then added a third
task. Figure 3-5 shows the resulting average price as a function of time. Before the
addition of the third task, the observed equilibrium price is close to the theoretical
value (i.e., the rate at which currency enters the system). After introducing the
additional task, the average price adjusts within a few auction cycles to the new
equilibrium value, a sign of the adaptability of the system when there are multiple
tasks competing for the processors. Note that this transient time is the same as when

starting from an initially idle network (compare with Figure 3-3).
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Figure 3-4: Price Equilibrium: Local Connectivity

Average price as a function of time in a network with twelve locally-connected
machines configured as a torus. Funding is supplied every 10 seconds to three
tasks A, B, and C in the amounts $0.30, $0.20, and $0.10, respectively, and
the length of each time-slice is 60 seconds. Thus the total rate at which money
enters the system is $0.06/sec. These tasks were started on nonadjacent nodes.
Measuring the average price between ¢ = 400 and t = 1600 sec., we find that
the average price = $0.00487/sec, with standard deviation $0.0007/sec.
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Figure 3-5: Market Price: Adaptation

Average price as a function of time in a network with six fully-connected ma-
chines. Initially, two tasks, each of which received $0.10 every 10 seconds, com-
peted with one another. The equilibrium price quickly reached a level of about
$0.0033/sec, around which it fluctuated. At t = 671 sec. (marked by first line
segment on {ime axis), a third task, which received $0.20 every 10 seconds, was
added to the system. It made its first successful bid 75 sec. later (second line
segment). After this point, the pricz quickly rose to a new level, fluctuating
about a value of $0.0067/sec. after a transient lasting just a few auction cycles.
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The transient time could be reduced even more if new tasks started with enough
funding to match the current market price instead of waiting for sufficient funds
to accumulate. At any rate, the fact that an equilibrium market price is readily

established, even with relatively few agents, makes such strategies possible.

3.3.3 High priority tasks

Systems that schedule tasks according to fixed priorities enable high-priority tasks to
run right away. Spawn’s market mechanisms can also give some tasks high priority,
where higher funding corresponds to a higher priority. To demonstrate this, we in-
troduced a high-priority task into a system in which low-priority tasks were running;
figures 3-6 and 3-7 illustrate the system’s response. The experimental market initially
consisted of two tasks continually funded at rates of $0.01/sec. and $0.02/sec. After
the initial transients subsided, a new task was injected into the market with a funding
rate of $0.07/sec. and a total allocation of $50.40.

As the figures show, the high-priority task rapidly took over most of the avail-
able resources. This confirms the responsiveness of the system to sudden changes
in demand. This is not a surprising rerult, given the previous results on fairness of

resource allocation and the short observed transients.

3.3.4 Price differentials in heterogeneous systems

When the machines in the network are not homogeneous, price differentials develop
between machines, reflecting their relative values. Figure 3-8 shows the prices in a
system with 9 auctions: 3 running on Sun 4/260’s and 6 on Sun 4/110's. The agents
hold a Sun 4/260 to be 1.4 times as valuable as a Sun 4/110. The factor of 1.4 is
based entirely on the relative speed of the machines for the given application. Once
the average prices reach equilibrium, they differ by a factor close to 1.4: $0.0031/sec.
for the 110’s and $0.0054/sec. for the 260’s.
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Figure 3-6: Market Response to a High Priority Task

Average price as a function of time when a high-priority task is introduced into
a system with low-priority jobs in it. The first vertical line cegment on the time
axis denotes the introduction of the high-priority task, and the second one the
termination of its funding.
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Figure 3-7: High-Priority Fairness

Resource usage for the tasks. Each figure plots the fraction of available resources
used vs. time. The upper figure corresponds to the high-priority task while the
lower one corresponds to the two low-priority tasks.
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Figure 3-8: Price Differential in a Heterogeneous System

Price differentials in an inhomogeneous system. The price averaged over 3 Sun
4/260% is in black; the price averaged over 6 Sun 4/110’ is in gray. The time
slices were 60 sec. Each of four roots were furded with $0.10 every 10 sec.

3.3.5 Scaling to larger systems

The experiments performed above exhibit noticeable price fluctuations, unlike human
markets. Since the human economy consists of a very large number of agents, it is
of interest to see the extent to which the fluctuations diminish as the system size
increases. Because addressing this question would require systems with more tasks
and machines than are available to us, we instead simulate the key features of the
Spawn system: its funding and bidding.

The simulation follows the evolution of the agents’ bank accounts and the auction
prices, given various initiai conditions. The basic iterated loop of the simulation
consists of calculating the time of the next event - either the beginning of an auction
timeslice or the arrival of a funding droplet to one of the agents - and updating the
agents’ bank accounts accordingly. If the event happens to be the beginning of an

auction’s timeslice, the price at which it was bought is recorded. The evolution of
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the simulated system is completely determined by the initial conditions.

The simulation differs somewhat from the actual implementation of Spawn in
that the iree of agents funded by a given root is replaced by a group of agents, each
of which receives an identical amount of funding per funding period. Variation in
funding among agents descended from the same root, which arises primarily from
the distribution in the number of management levels above an agent, is completely
ignored. None of the complicated issues of parentage and delegation of responsibility
for orphans to other manager processes are dealt with in the simulation.

As in Spawn, agents which are members of the same group do not compete with
one another. The number of agents in each group is assumed to be fixed by the
funding ratio, the number of auctions, and the branching ratio used by the managers
when they try to spawn the next generation of agents. For example, in the run in
Figure 3-2 (page 29) with funding ratio 3:2:1 and 6 fully-connected auctions, the
branching ratio was 2. Therefore, at any given moment there were about 12 agents
bidding for the next timeslice. Since the funding ratio is 3:2:1, the simulation would
set the number of agents in each group to be 6, 4, and 2, respectively.

The simulations show that the magnitude of the fluctuations relative to the av-
erage price is approximately proportional to 1/N, where N is the number of agents
in the system. We have verified this dependence for many different configurations:
multiple auctions, different sizes of groups, etc. Thus, even if initial experiments
on small networks display large price fluctuations, we expect the price equilibria to
be reasonably well-defined in medium-sized networks. In addition, differences in the
average prices of various auctions diminish as the network grows in size.

The simulations alsc establish that the price fluctuations are similarly insensitive
to how much competition there is in the system, provided that there is more than one
competitor. This was determined by running the simulator with a large number of
agents (60) which were arranged in anywhere from one to twenty groups and noting

that, for more than one group, there was little variation and no discernible trend in
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Figure 3-9: Sensitivity to Initial Conditions
Price as a function of time in the simulated Spawn system. The prices which
result from starting the roots 0.5 sec. apart are represented by the black curve;
those which result from starting the roots 0.6 sec. apart are represented by
the gray curve. Although the initial behaviors are very similar, they diverge
noticeably near ¢ = 1000. The complete lack of correlation is particularly evident
between ¢ = 2000 and ¢ = 3000.
the price fluctuations.

Although the fluctuations decrease with IV, their irregular nature may seem some-
what mysterious at first because the simulation is completely devoid of any random
inputs. Further investigation reveals that the price fluctuations are extremely sensi-
tive to the initial conditions. Figure 3-9 illustrates the fact that two sets of starting
times for the roots which are extremely close eventually lead to completely diver-
gent behavior. This sensitivity to initial conditions is a characteristic of deterministic
chaos [Par87]. The chaotic nature of Spawn arises from the nonlinear updating of
the agents’ bank accounts — the selection of the highest bidder (i.e., the one with the
highest bank account) and the subtraction of the second highest bid from the highest

bidder’s bank account.

As a consequence of the chaotic nature of Spawn, no two experiments will ever



CHAPTER 3. EXPERIMENTS 41

yield exactly the same result. Nevertheless, by carefully measuring the starting times
of roots in an actual Spawn experiment on a single auction, we have been able to verify
that the simulation can reproduce the actual prices for about 25 auction timeslices
before diverging beyond recognition.

Further simulations suggest that, in addition to affecting the the exact history
of prices, the initial conditions can also significantly influence the measured average
fluctuations. This is due to the fact that time-averages of chaotic series are inherently
unreliable even if they are taken over very long periods of time. In either case, if
we are interested in measuring price fluctuations accurately, it is necessary to run
experiments for long periods of time to ensure adequate statistics.

Despite the fact that the fluctuations are chaotic, this should not adversely affect
the performance of Spawn, since their magnitude is proportional to 1/N. Furthermore,
our fairness results (observed for the actual system) show that Spawn performs well
even for small cases. This is corroborated by measurements of fairness in larger,

simulated systems.
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Related Work

4.1 Exploiting Idle Time

An early experiment in distributed computation was the Worms project conducted
by Shoch and Hupp at Xerox PARC [Sho82]. A worm in their system was a computa-
tion composed of multiple segments, each executing on a different machine. A worm
segment continually searched for idle machines on the network into which it. could
replicate itself, thereby causing the worm as a whole to “grow” as it expanded into ad-
ditional networked computers. The simplest worm program was the existential worm:
a computation which sought only to survive and grow. Other worm computations
included novel, but not particularly useful, applications such as a distributed alarm
clock and a roving “cartoon of the day” billboard system. Perhaps the most interest-
ing application used worms to generate computer animation sequences by parcelling
the graphic computations by frames to remote machines.

One shortcoming of the Worms project is that it relied upon the Xerox Alto work-
station. The Alto was designed for a single user, and lacks provisions for protection
and sharing (such as multiple memory address spaces) that can be found in more mod-
ern workstations [Tha82). An idle machine had to be rebooted to execute a worm

segment, and bug-ridden worms could (and did) crash numerous machines [Sho82).
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A more substantial problem was the rudimentary control structure employed, which
presented difficulties in managing stable, well-behaved worms. These serious prob-
lems, while highlighting important directions for future research, ultimately rendered
the Worms project impractical. Spawn is related to the Worms project in that both
share the vision of permitting an expanding computation to inhabit idle networked
workstations. Spawn’s mechanisms for resource management and control, however,

are much more sophisticated than the simple strategies employed in Worms,

4.2 Resource Management

Improving methods for managing computational resources is a central concern of
researchers invclved in the study of resource allocation and scheduling. Conventional
schedulers for computer systems rely upon centralized global controllers to allocate
resources among tasks [Cof73, Pet85].

The problem of scheduling in distributed computer systems has been a topic of
active research for many years; a good survey can be found in [Tan85]. In the area of
distributed processor scheduling, inost of the work has focused either on deterministic
mathematical models or on the formulation of useful heuristics. The mathematical
treatments of scheduling, such as those based in graph theory [Cho82, Lo84|, usu-
ally make simplifying assumptions that are not viable in real systems. Heuristic
approaches, more common in practice, involve the estimation and communication
of load information in order to make distributed scheduling decisions. A variety
of heuristic methods have been studied. These include random, limited exchanges
of information [Bar85], techniques from expert systems and rule-based prograrnming
[Lo87], knowledge-based solutions [Pas88), statistical time-series analysis [Hai88), and
distributed bidding and negociation metaphors [Smi80, Mal83]. It is this last class of
heuristic algorithms, based upon bidding and market-like negotiations, wkich are most

related to Spawn’s distributed computational economy. Research involving market-
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based mechanisms is considered in greater detail in the following section.

4.3 Computational Markets

A predecessor to automatic market-based strategies for managing computational re-
sources was Sutherland’s “futures market” in computer time [Sut68]. Users engaged
in a continuous auction which allowed the price of computer time on a single PDP-1
to fluctuate with demand. The system was run manually; users pested bids on a phys-
ical scheduling board, which reflected the current state of the auction. Users were
assigned different amounts of “currency” by system administrators; the amounts de-
pended on the importance of their projects. This currency was then used to reserve
blocks of time: a user would indicate a block of time and the amount he was willing to
pay for it. Higher bids could pre-empt lower ones. Since the price of time fluctuated
according to demand, users were presented with a choice between short periods of
expensive prime time and longer blocks during less-desirable off-peak hours. Users
with higher priority were issued more currency than those with lower priority, who
they could consequently outbid. Sutherland reported that his system worked more
efficiently than any of the many other schemes which he had tried.

Malone’s Enterprise system is a decentralized market-like scheduler for load-
sharing in distributed computing environments [Mal83, Mal87, Mal88]. Enterprise,
which is similar in many respects to the Contract Net protocol of Smith and Davis
[Smi80, Smi81, Dav83], is organized around a sequence of announcement, bid, and
award actions. In the announcement stage, a client broadcasts a request for bids
which includes a description of the task to be run, an estimate of required processing
time, and a numerical task priority. Idle contractors reply with bids containing esti-
mated completion times for the client’s announced task. A client collects bids from
responding contractors. After a pre-determined amount of time, a client evaluates all

of the bids which is has received and awards its task to the best bidder (usually the
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one with the earliest estimated completion time). The Enterprise system protocol
allows for mutual selection of clients and contractors; contractors can decide which
clients to serve based upon task information, and clients can choose among available
contractors. In addition to an implementation of his system on Xerox D-machine
workstations, Malone performed a set of simulations to test the effects of various pre-
set system parameters on the performance of the system. He found that pooling tasks
in a distributed system using Enterprise resulted in significant performance improve-
ments over running the same tasks locally in their home machines. His simulations
indicated that such improvements are robust over a wide range of system parameters,
including a variety of message-delay times and substantial errors in processing time
estimates.

Like Worms, Enterprise suffered from the unfortunate protection limitations of
computer workstations in which all processes share a single memory address space.
Moreover, since Enterprise was implemented using the Interlisp-D environment, a
client could arbitrarily mutate a contractor’s global Lisp environment, resulting in
many difficulties. For example, a common problem was that client document format-
ting processes often required the loading of bulky font information, which used up
substantial amounts of memory in the contractor workstation. The possibility of un-
desirable side-effects to one’s environment was a disincentive for use, and Enterprise
failed to remain in regular operation.

Aside from implementation-related problems, Enterprise was also limited by a
number of fundamental design decisions. First, the system had no provisions for true
market price information. The absence of a price mechanism inhibited the flexibility
of the system by constraining the criteria by which contractors and clients could
make decisions. For example, clients were incapable of making tradeoffs between fast,
expensive contractors and slow, relatively cheap contractors. Price information would
also obviate the need for complicating the system with artificial “priorities” such as

those employed by Enterprise. Another limitation was a lack of support for operation
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in a truly heterogeneous distributed system (i.e., one populated by workstations with
different CPU types).

Recently, Miller and Drexler published a set of papers on the subject of agoric
systems [Mil88, Dre88]. They define an agoric system (from the Greek agora: a
meeting and market place) as “a software system using market mechanisms, based on
foundations that provide for the encapsulation and communication of information,
access, and resources among objects.” Miller and Drexler envision a world in which
large, evolved agoric systems with valuable emergent properties are inextricably linked
to larger human economic markets. Their work consists of a wealth of interesting but
untested conjectures about the desirability, behavior, and efficiency of computational
markets. The agoric systems which they describe are populated with agents following
business strategies, which may have both pre-defined and ada).tive components. Given
a set of initial seed strategies, it is their hope that agoric systems will grow and
evolve through a combination of human design and adaptive agent behavior. In
[Dre88], auction-based processor scheduling, rent-based storage management, and
agent occupations such as managers, sponsors, and consultants are discussed. Due to
the complexity of their proposed mechanisms as well as several open problems, their
ideas remain unimplemented. Their work on processor scheduling is most relevant to
this thesis, but is primarily concerned with the efficient auctioning of processor time
within a single serial computer system. They are thus concerned with problems such
as the apparent paradox that agents who wish to purchase time must obtain time
to place their bids. These issues have only limited relevance to the Spawn system.
Nevertheless, their uniprocessor algorithm shares with Spawn the features of linearly
increasing bids across a series of second-price auctions [Dre88]. The agoric systems
approach as outlined by Miller and Drexler provides a plethora of interesting topics
for future research.

A very recent publication by Ferguson, Yemini, and Nikolaou describes what they

term microeconomic algorithms for load balancing in distributed computer systems
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[Fer88]. Their scheme, like the agoric approach described by Miller and Drexler,
involves a competitive market for resources based upon a pricing mechanism. In
their system, jobs compete for communication and processing resources by bidding
on auctions held by processors. Jobs are agents which have a task to perform, and
may enter the system at any processor. They receive an initial allecation of money
upon entry to the system, which they must use to purchase processing time, and
to pay for communication charges when crossing network links between processors.
Processors auction off CPU time and communications bandwidth to jobs, trying only
to selfishly maximize their own revenues. Information about current prices is available
to jobs via bulletin boards, which are maintained by each processor; bulletin boards
contain pricing “advertisements” from neighboring processors. A job schedules itself
on a processor through the following sequence of events: it queries the local bulletin
board, computes a budget set of affordable processors, chooses an element of that set
based upon a preference relation that is a function of price and service time, and then
places a bid on that processor’s auction. A processor is responsible for auctioning
its idle resources and updating its prices on local bulletin boards. When a processor
resource becomes idle, the processor holds an auction to determine which job will
next get that resource. Different auction models, including sealed bid auctions and
Dutch auctions were used in various instantiations of their system. Based upon Adam
Smith’s classic “invisible hand” argument from economics, it is reasoned that selfish
local optimizations by jobs and processors will lead to globally desirable rescurce
allocation. Ferguson et. al. provide and analyze simulation results, leading them
to conclude that their competitive economic algorithms achieve a globally effective
allocation of CPU and communication resources that is comparable, and in many
cases superior, to traditional algorithms.

These results are very encouraging; through simulation techniques Ferguson et. al.
have demonstrated the viability of market-based mechanisms for resource manage-

ment in distributed systems. However, it is important to note that they were primarily
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concerned with scheduling unrelated tasks in a network of homogeneous processors
[Fer88]. Their sharp focus on the collective performance of a set of independent pro-
cesses caused them to neglect the effects of funding allocation policies. In fact, the
initial allocation of money to jobs was performed arbitrarily in their simulations. Al-
though they found that aggregate system performance is fairly insensitive to the initial
allocation policy, they did not analyze the effects which it had on the performance of
individual jobs.

In contrast to the simulations described in [Fer88|, Spawn was explicitly designed
to support large concurrent applications that execute in a heterogeneous distributed
system. The experiments and analysis we present in this thesis examine the effects of
various funding allocation strategies. In particular, we explore the impact of funding
policies on effective dynamic priorities and the fairness of resource distribution for
a set of competing, concurrent applications. The dynamic behkavior of prices for a
variety of system configurations, including those with heterogeneous processors, is
also examined. We believe that Spawn is the first market-based system which has
considered the issue of funding concurrent applications. One of the fundamental
innovations of the Spawn system is its sponsorship mechanism, which manages a
concurrent computation through the relative allocation of continuously-flowing funds

in its tree of active processes.

4.4 Sponsorship and Funding

A key issue that Spawn confronted was the development of a general mechanism
for funding distributed computations. This problem is very different from that of
scheduling single tasks, since the primary concern is with the execution of concurrent,
tree-structured computations.

Spawn’s sponsorship mechanism was influenced by programming language con-

structs in the actor languages developed by the Message-Passing Semantics Group at
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MIT. The actor model of computation is explained in [Agh86]. The idea of sponsored
computations was first proposed for managing resources in the actor language Act2
[The83]; the role of sponsors has evolved in successive actor languages. The most
recent actor language, Acore [Man87], employs spcnsors to control the rate at which
concurrent threads of computation proceed.

In Acore, every transaction (i.e., message-send and reply) iu an actor computation
must be sponsored. When a transaction is run, the runtime system requests an allo-
cation of ticks from its sponsor. A tick is the basic unit of computational resource,
and represents the resources required to perform a single message-send. A sponsor
may either grant a number of ticks, or deny further funding, in which case the trans-
action’s thread is aborted. In practice, Acore sponsors have primarily been used to
deny funding to unwanted computations. More sophisticated sponsor strategies are
difficult to reason about, since ticks are not sensitive to dynamic resource utilization
information, and always represent the same quantity of resources.

Spawn has refined the actor notion of sponsorship in the context of a computational
economy. Two weaknesses with the actor approach were solved in Spawn. First, in
Acore, sponsors are forced to make critical decisions at specified points; they must
respond quickly to requests for additional ticks. Seccnd, sponsors are also required
to make decisions involving absolute amounts of funding. In Spawn, we found it
desirable to avoid these constraints. Our solution is based on the idea of a continuous
flow of funds through the tree-structured sponsorship hierarchy. Instead of requiring
subtasks to explicitly request absolute amounts of funding from their sponsors, we
allow sponsors to dynamically adjust the relative outgoing allocations of funds to
their children.! This solution avoids critical decision points because sponsors can

adjust relative funding allocations at any time. Relative allocations are easier for

INote that it is possible to explicitly program relative funding allocation given a mechanism
for distributing absolute amounts of funding. In this way, the actor sponsorship mechanisms cen
be made to behave like the Spawn sponsorship hierarchy. However, this approach has not been
used in practice. By providing relative allocetion as a primitive operation, Spawn encourages the
sponsorship approach outlined above.
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sponsors to reason about, and reduce the allocation problem to one of adjusting a
few “weights”; this facilitates simple, adaptive funding algorithms. Fillally, the size
of a concurrent application’s tree of active processes dynamically adjusts to market

conditions, as explained in Section 2.4.

4.5 Computational Dynamics

The dynamical behavior of open systems is the focus of active research by the
Dynamics of Computation Group at Xerox PARC. Their work analyzes the dynamics
of computational ecolegies, so named due to their resemblance to social and biological
organizations.

Using analytic tools from statistical physics and nonlinear game dynamics, Huber-
man and Hogg discovered that open systems composed of even very simple processes
can exhibit a rich variety of dynamical behavior, including regimes characterized
by fixed points, oscillations, and chaos [Hub88]. Computer simulations were devel-
oped which allowed the observation of resource allocation dynamics in computationa!
ecosystems. These simulations enabled Kephart, Hogg, and fluberman to verify their
theoretical predications concerning the appearance of complicated dynamical behav-
ior [Kep89].

Spawn has served as an experimental workbench for studying the behavior of a real
computational ecology. The ability to use Spawn to perform quantitative experiments
in computational dynamics has facilitated the development of a synergistic relation-
ship between theory and implementation. This relationship has advanced both our

abstract models and our experimental system.



Chapter 5

Conclusions

5.1 Summary

We have described the architecture, implementation, and testing of Spawn, a dis-
tributed computational system that shares many properties with human ma.rkéts and
auctions. Spawn addresses the problems of resource contention, dynamic load balanc-
ing, the management of concurrent computations, and the utilization of otherwise-
wasted computational resources. As the experiments show, the system can success-
fully handle these problems without resorting to global controls. Furthermore, dis-
tributed computations competing for resources can be efficiently managed with ac-
ceptable overhead. This allows the use of existing networks for certain classes of large,
easily-parallelized computations that are commorly run on supercomputers. This is
the case with Monte-Carlo, which has emerged as a favorite simulation tool in the
physical sciences.

In addition to its successful performance, Spawn has enabled many quantitative
experiments that probe the dynamics of real computational markets. In particular,
we have found that a very small number of agents (of order 10) can produce an
identifiable market, since fluctuations were not able to obscure the stable equilibria

in prices. Moreover, Spawn has opened the door to a number of experiments that can
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test proposed methods for dealing with key characteristics of distributed computation,

such as imperfect knowledge and delayed information.

5.2 Directions for Future Research

One research area that warrants considerable attention is the smooth integration
of Spawn’s ideas with a robust language for parallel and distributed computation.
As an experimental research tool, Spawn is somewhat fragile and awkward to use.
Simple, expressive linguistic mechanisms would facilitate more rapid advancement
by researchers concerned with market-based computational resource management.
We are currently evaluating the suitability of available platforms for distributed and
concurrent computation, upon whichk we can implement an improved version of our
software.

Another area of interest is the specification and implementation of more sophis-
ticated funding strategies for controlling concurrent computations. This thesis has
demonstrated the effectiveness of a small number of simple funding strategies, but the
general topic has been largely unexplored. It may be possible to develop automated
tools to assist in the development of novel funding algorithms. For example, software
similar to a “trace scheduler” [Eil85] capable of monitoring dynamic resource usage
patterns in a concurrent computation may prove valuable for improving or evolv-
ing funding strategies for a given application. The applicability and interaction of
techniques such as static program analysis and adaptive algorithms in the context of
market-based resource allocation is an open question.

An additional topic for further work is the determination of suitable granulari-
ties for market-based resource management. Spawn operates in the context of very
coarse-grained distributed computations. Attempting to use market mechanisms to
solve other problems in distributed computing (such as reclaiming wasted resources

consumed by orphan processes [Nel81] and performing intelligent object migration)
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would provide insight into the general applicability of such techniques. Much would
also be learned by attempting to address the resource management problems of fine-
grain parallel computers. For example, the market mechanisms explored in this the-
sis could possibly be adapted to perform scheduling and load-balancing on parallel
message-passing machines [Dal89].

A final area for further study is diversity in computational econcrnies. Although
we have focused on the purchase of processor time only, we should point out that the
price mechanism can allow machines with different capabilities (floating point hard-
ware, large disc space, direct access to special databases or proprietary algorithms,
etc.) to have different values, thus enabling tasks to flexibly devote their currency
to the resources most important to them. Such a scenario would bring Spawn into
greater correspondence with a real economy, in which there is a multitude of different
goods. By the same token, the market mechanism supports a deeper symmetry than
that studied here, in which computational results obtained by agents can themselves
become marketable goods of potential use to other agents [Mil88]. This way, one
can envision a more cooperative collection of processes, which, despite their different

goals and characteristics, can contribute to each other’s performance.



Appendix A

Spawn Library Routines

A.1 Overview

This appendix contains the specifications for the application programmer’s interface
to the Spawn system. The interface specifications are given for a simple stack-based
Algol-like language. Specifications are informally documented in the style presented
in [Lis86). These routines provide a Spawn application programmer with facilities for
interaction with the Spawn system processes.

An application worker uses the routines provided in the WorkerLib interface
in order to communicate with its manager. An application manager makes use of
the routines contained in the ManagerLib interface to interact with distributed

application processes and the Spawn system processes.
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A.2 WorkerLib

e Spawn Worker Library Routine Specifications

WorkerLib_Initialize: procedure() returns(success: boolean)

requires: Must be called prior to calling any other WorkerLib routines.
effects: Initializes the Spawn Worker interface. Returns true if successful, false
otherwise.

WorkerLib_SelfTaskld: procedure() returns(taskld: integer)

requires: WorkerLib interface has been initialized.
effects: Returns the unique task identifier for the worker.

WorkerLib_MessageToSponsor: procedure(buffer: array of character,
length: integer) returns(success: boolean)
requires: WorkerLib interface has been initialized.

effects: Delivers the opaque application-specific message encoded by buffer[1..length]
to the worker’s sponsor. Returns true if successful, false otherwise.
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A.3 ManagerLib

e Spawn Manager Library Routine Specifications

ManagerLib_Initialize: procedure() returns(success: boolean)

requires: Must be called prior ‘o calling any other ManagerLib routines.
effects: Initializes the Spawn Manager interface. Returns true if successful,
false otherwise.

ManagerLib_SelfTaskld: procedure() returns(taskId: integer)

requires: ManagerLib interface has been initialized.
effects: Returns the unique task identifier for the manager.

ManagerLib_SelfUserld: procedure() returns(user: string)

requires: ManagerLib interface has been initialized.
effects: Returns the user identification string for the manager.

ManagerLib_SelfGroupld: procedure() returns(group: string)

requires: ManagerLib interface has been initialized.
effects: Returns the group identification string for the manager.

ManagerLib_MessageToSponsor: procedure(buffer: array of character,
length: integer) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Delivers the opaque application-specific message encoded by buffer[1..length]
to the manager’s sponsor. Returns true if successful, false otherwise.

ManagerLib_MessageToSubmanager: procedure(taskld: integer,
buffer: array of character, length: integer) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Delivers the opaque application-specific message encoded by buffer[1..length)
to the submanager specified by taskld. Returns true if successful, false
ctherwise.

ManagerLib_DeclineExtensions: procedure() returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Informs the local resource manager not to purchase extensions when
they are offered. Returns true if successful, false otherwise.
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ManagerLib_SetFundingAllowance: procedure(taskld: integer,
allowance: real) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Sets the relative funding allocation of the submanager named by taskld
to allowance. Returns true if successful, false otherwise.

ManagerLib_SetSelfAllowance: procedure(allowance: real) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Sets the relative funding allocation of the manager’s own reservoir to
allowance. Returns true if successful, false otherwise.

ManagerLib_ReleaseReservoir: procedure(fraction: real) returns(success: boolean)

req: ires: ManagerLib interface has been initialized, 0.0 < fraction < 1.0
eiiects: Distributes a portion of the funds accumulated in the manager’s reser-
voir to its children (according to their current relative allowances). Re-
turns true if successful, false otherwise.

ManagerLib_AbortWorker: procedure(taskld: integer) returns(success: boolean)
requires: ManagerLib interface has been initialized.
effects: Terminates the execution of the worker named by taskld. Returns true
if successful, false otherwise.

ManagerLib_AbortManager: procedure(taskld: integer) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Terminates the execution of the submanager named by taskld. Any
unused funds are returned prior to its termination. Returns true if
successful, false otherwise.

ManagerLib_RepossessManager: procedure(taskld: integer) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effecta: Repossesses unused funds held by the submanager named by taskId.
Returns true if successful, false otherwise.

ManagerLib_SpawnWorker: procedure(taskName: string,
taskArgs: array of string, nTaskArgs: integer,
workDirPath: string) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Requests that a worker process of type taskName be created locally.
Returns true if successful, false otherwise.
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The abstract taskName is resolved via the mappings contained in the
caller’s task file which map the abstract name and the local machine
type into a concrete network path for the appropriate executable file.

The array taskArgs contains nTaskArgs command line arguments with
which to invoke the executable file.

The network path workDirPath specifies the directory in which the
executable should be invoked; i.e. it is the “current working directory”
for the invocation.

An APPLICATIGN_.WORKER_BIRTH message is delivered to the caller
when the worker process becomes active.

An APPLICATION_WORKER_DEATH message is sent when the worker
process terminates.

ManagerLib_SpawnComplexWorker: procedure(useTaskMap* boolean,
taskName: string, taskArgs: array of string,
nTaskArgs: integer, workDirPath: string,
outputHost: string, outputPort: integer) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Detailed interface for creating a local worker process. Returns true
if successful, false otherwise. Works like the simpler SpawnWorker(),
with the following differences:

o If useTaskMap is false, the name specified by taskName is not re-
solved via the mappings centained in the caller’s task file. Instead,
taskName is used as the concrete network path name for the appro-
priate executable file.

o Worker output is captured and sent to the port specified by out-
putPort on the machine specified by outputHost. If outputHost is
nil, worker output is simply discarded. Note that is is very useful
for capturing the results of “black-box” applications.

ManagerLib_.SpawnManager: procedure(taskName: string,
taskArgs: array of string, nTaskArgs: integer,
workDirPath: string, subTaskMapPath: string,
essential: boolean,
workEstimate, workExtensionEstimate: integer,
warnTime: integer, allowance: real,
timeWeight, priceWeight: real,
taskGroup: string, intraGroupCompete: bcolean,
taskUser: string, intraUserCompete: boolean) returns(success: boolean)
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requires: ManagerLib interface has been initialized.
effects: Requests that a new submanager process of type taskName be spawned
on a remote machine. Returns true if successful, false otherwise.

The abstract taskName is resolved via the mappings contained in the
caller’s task file which map the abstract name and remote machine type
into a concrete network path name for the appropriate executable file.

The array taskArgs contains nTaskArgs command line arguments with
which to invoke the executable file.

The network path workDirPath specifies the directory in which the
executable should be invoked; i.e. it is the “current working directory”
for the invocation. The network path subTaskMapPath specifies the
location of the task file to use in resolving task names for spawn requests
made by the new submanager.

The value of the “essential” flag indicates whether or not the new sub-
manager requested is essential - i.e. it must be executed even if no
time can be purchased during the caller’s lifetime. If essential is set
and the new task has not been scheduled when the caller terminates,
responsipility for it is delegated to the caller’s sponsor.

The workEstimate and workExtensionEstimate parameters specify the
estimated processing times required for the new submanager (in units
of seconds for a machine with a task-specific work-rating of unity). The
warnTime argument indicates the absolute amount of warning time (in
seconds) that should be provided to the new submanager if it becomes
necessary to forcibly terminate it. A Unix SIGTERM signal is delivered
to the submanager warnTime seconds prior to the delivery of a fatal
SIGKILL signal.

The allowance given to the new submanager specifies ite relative allo-
cation of incoming funding. The total allowances for all submanagers
and the caller’s reservoir is normalized to sum to unity.

The timeWeight and priceWeight parameters allow the crude specifica-
tion of a utility function used by the resource manager in placing bids
on the caller’s behalf. These parameters are based on identical parame-
ters defined by Ferguson and his colleagues at Columbia. In the thesis,
we always set timeWeight = 1.0 and priceWeight = 0.0, demonstrat-
ing a constant preferance for the machine with the soonest completion
time, despite its price.

The taskUser and taskGroup arguments specify the user and group
names for the new submanager’s identity. If intraUserCompete is set,
two tasks with the same user name are allowed to compete. If intra-



APPENDIX A. SPAWN LIBRARY ROUTINES 60

GroupCompete is set, then two tasks with the same group name are
allowed to compete.

An APPLICATION_MANAGER_BIDDING message is delivered to the caller
when the resource manager begins to bid for processing time on its be-
half. An APPLICATION_.MANAGER_ACTIVE message is delivered to the
caller when the resource manager is successful in purchasing process-
ing time for the new task. An APPLICATION_DETACH or APPLICA-
TION_ABORT message is sent if the submanager process terminates.

ManagerLib_SelfPathInfo: procedure(workDirPath: string, taskMapPath: string)

requires:
modifies:
effects:

ManagerLib interface has been initialized.

workDirPath, taskMapPath

Sets workDirPath to the network path for the current working directory.
Sets taskMapPath to the network path for the task file used to resolve
abstract task names into concrete executable files. Note that these
paths were specified by the manager’s sponsor before the manager’s
creation.

ManagerLib_SelfPurchasePrice: procedure(time, funds: real)

requires:
modifies:
effects:

ManagerLib interface has been initialized.

time, funds

Sets time to the length of the time slice (in seconds) which was pur-
chased for the manager’s execution by its sponsor. Sets funds to the
amount of money paid by the sponsor for that time slice.

ManagerLib_RequestGrantTotal: procedure() returns(success: boolean)

requirea:

effects:

ManagerLib interface has been initialized.

Requests the total amount of money received by the manager {from
its sponsor. The total is cornputed and delivered in an APPLICA-
TION_GRANT_TOTAL message. Returns true if successful, false oth-
erwise.

ManagerLib_RegisterHandler: procedure(messageCode: integer,

requires:

effects:

handler: procedure) returns(success: boolean)

ManagerLib interface has been initialized.

Defines handler to be the application procedure which is called to han-
dle a pending message of type messageCode. The handler is invoked
when ManagerLib_HandleMessage() is called to dispatch to the appro-
priate message handler. Returns true if successful, false otherwise.
The valid messageCodes are:
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APPLICATION_MESSAGE,
APPLICATION_ABORT,
APPLICATION_ATTACH,
APPLICATION_DETACH,
APPLICATION_.GRANT_TOTAL,
APPLICATION_EXTEND,
APPLICATION.MANAGER_BIDDING,
APPLICATION.MANAGER_ACTIVE,
APPLICATION_WORKER_BIRTH,
APPLICATION_WORKER_DEATH

ManagerLib_PendingMessage: procedure(timeOut: integer) returns(success: boolean)

requires: ManagerLib interface has been initialized.
effects: Returns true if any incoming messages are available. If no messages are
waiting, blocks (without busy-waiting) until:
(1) a message is available
(2) an interrupt (e.g. signal from OS) occurs, or
(3) timeout occurs after timeOut milliseconds
If timeOut is nil, the call will never time out. Returns false if a timeout
or interrupt occurs.

ManagerLib_HandleMessage: procedure() returns(success: hoolean)

requires: ManagerLib interface has been initialized.
effects: If no incoming messages are available, returns false. Otherwise, causes
a dispatch to the appropriate handler procedure specified in an earlier
call to ManagerLib_RegisterHandler(). If no appropriate handler was
previously defined, the message is ignored. Returns true if a message
was handled.
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o Special Root Manager Routine Specificaiions

ManagerLib_RootInitialize: procedure(userlName, groupName,
taskMapPath: string) returns(success: boolean)

requires: Must be called prior to calling any other ManagerLib routines.
effects: Initializes the Spawn Manager interface for a root manager. The strings
userName and groupName specify user and group identifications, re-
spectively, for the root manager. The network path taskMapPath spec-
ifies the location of the task file used to resolve abstract task names into
concrete executable files. Returns true if successful, false otherwise.

ManagerLib_RootAbort: procedure() returns(success: boolean)

requires: ManagerLib interface has been initialized for root manager.
effects: Starts a recursive abort of root manager and all submanager processes.
Any unused funds are returned to the top-level user’s bank account
prior to the application’s termination. Returns true if successful, false
otherwise.

ManagerLib.RootSetFunding: procedure(reserve, dropSize, period: real)
returns(success: boolean)

requires: ManagerLib interface has been initialized for root manager.
effects: Sets the top-level funding for the root manager to be $dropSize every
period seconds up to a total of $reserve. The money is withdrawn
from the root’s local bank account. Overrides all previous calls to this
routine. Returns true if successful, false otherwise.

ManagerLib_RootDirectFunding: procedure(amount: real) returns{success: boolean)

requires: ManagerLib interface has been initialized for root manager.
effects: Delivers $amount as a single funding drop to the root manager. Note
that this is in addition to any periodic funding drops specified via Man-
agerLib_RootSetFunding(). The money is withdrawn from the root’s
local bank account. Returns true if successful, false otherwise.
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A Spawn Application

B.1 Overview

This appendix presents a detailed look at a sample Spawn application, a concurrent
Monte-Carlo simulation. The application is written in pseudo-code with Algol-like
syntax and standard constructs from block-structured languages such as C and Pascal
(e.g., begin-end blocks, while and for loops, and if-then-else conditionals). All
parameter-passing is call-by-reference. For simplicity, we assume the existence of a
primitive HashTable abstraction which internally uses dynamic memory allocation
for the insertion of new items.

The documentation style for procedural interfaces is identical to the format used

in Appendix A. Other comments are italicized and preceded by bullets ().
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B.2 Worker Module

o Spawn Application Worker Module
o A Worker for Distributed Monte-Carlo Computations.

o Types

MonteCarloState: record
e Application-dependent state.
end

e Global State
TerminateFlag: boolean

Interrupt: procedure()

modifies: TerminateFlag (global)
effects: Sets global termination flag in response to an asynchronous termination
signal from the operating system.
begin
e set global termination flag
TerminateFlag := true
end

Terminate: procedure()

modifies: everything
effects: Cleans up and exits process.
begin
e Close any open files, etc., and call Uniz ezit().
end

e Specification only.
ResetProgress: procedure(progress: MonteCarloState)

modifies: progress
effects: Initializes (clears) progress.

Initialize: procedure(newProgress: MonteCarloState)

modifies: newProgress
effects: Performs all necessary initialization. Clears newProgress.
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bagin
TerminateFlag := false
ResetProgress(newProgress)

e Perform any other necessary initializations. For example,
Initialize random number generator, using current time,
process id to form seed.

end

o Specification only.
EncodeProgress: procedure(incrementalProgress: MonteCarloState
buffer: array of character, length: integer)
requires: buffer is large enough to hold encoded progress
modifies: buffer, length
effects: Uses Sun’s external data representation (XDR) routines to encode the
information in incrementalProgress in a machine-independent manner.
Sets length to the size of the encoded data, and places the encoded
results into buffer{l..length].

ReportProgress: procedure(incrementalProgress: MonteCarloState)

effects: Encodes incrementalProgress as an application message and delivers it
to our manager.

buffer: array of character

length: integer

begin
EncodeProgress(incrementalProgress, buffer, length)
WorkerLib_MessageToSponsor(buffer, length)

ResetProgress(incrementalProgress)
end

o Main Program
begin
nevProgress: MonteCarloState

o Register Interrupt() procedure as handler for Uniz SIGTERM signal.

e Initialize
WorkerLib_Initialize()
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Initialize(newProgress)
e Main Loop

while true do
e Compute a small number of monte-carlo trials.

e If terminating, make final progress report and die.
if TerminateFlag then
ReportProgress(nevwProgress)
Terminate()
endif

o Check if it’s time to report progress.
An application may decide, for ezample, to report progress
every N trials (using a simple counter), or
every T seconds (using a real-time alarm signal).
if ( e time to report progress ) then
ReportProgress(newProgress)
endif

endwhile

end
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B.3 Manager Module

o “Simple” Spawn Application Manager Module
o A Manager for Distributed Monte-Carlo Computations.

o This manager implements a very simple-minded funding strategy: Always maintain
MC_BRANCH submanagers. If a funded submanager detaches or aborts, spawn another
to take its place. This manager does not use relative progress or cost metrics in
allocating funds.

o Types

MonteCarloState: record
o Application-dependent state.
end

e Constants

MC_ALLOWANCE = 1.0
MC_BRANCH = 2

e Global State

NSubManagers, NFundedSubmanagers: integer
TaskFilePath, WorkDirPath: string
MgrArgs: array of string

NMgrArgs: integer

TerminateFlag: boolean

NReports: integer

Progress: MonteCarloState

Interrupt: procedure()

modifies: TerminateFlag (global)
effects: Sets global termination flag in response to an asynchronous termination
signal from the operating system.
begin
o set global termination flag
TerminateFlag := true
end

Terminate: procedure()

medifics: everything
effects: Cleans up and exits process.
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begin
o Close any open files, etc., and call Uniz exit().
end

e Specification only.
ResetProgress: procedure(progress: MonteCarloState)

modifies: progress
effects: Initializes (clears) progress.

Initialize: procedure(newProgress: MonteCarloState)

modifies: newProgress
effects: Performs all necessary initialization. Clears newProgress.
begin
TerminateFlag := false
ResetProgress(newProgress)

NFundedSubmanagers := 0
NSubmanagers := 0
NReports := 0

e Perform any other neceésdry initializations.
end

e Specification only.
EncodeProgress: procedure(incrementalProgress: MonteCarloState,
buffer: array of character, length: integer)

requires: buffer is large enough to hold encoded progress
modifies: buffer, length
effects: Uses Sun’s external data representation (XDR) routines to encode the
information in inciementalProgress in a machine-independent manner.
Sets length to the size of the encoded data, and places the encoded
results into buffer[l..length].

o Specification only.
DecodeProgress: procedure(incrementalProgress: MonteCarloState,
buffer: array of character, length: integer)

requires: buffer is large enough to hold encoded progress
modifies: incrementalProgress
effects: Uses Sun’s external data representation (XDR) routines to decode the
machine-independent progress information encoded by buffer[1..length],
placing the decoded results in incrementalProgress.
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ReportProgress: procedure(incrementalProgress: MonteCarloState)

effects: Encodes incrementalProgress as an application message and delivers it
to our manager.

buffer: array of character
length: integer

begin
EncodeProgress(incrementalProgress, buffer, length)
ManagerLib_MessageToSponsor(buffer, length)

end

SpawnWorker: procedure()
effects: Spawns a local Monte-Carlo worker process.
begin
ManagerLib_SpawnWorker(

e ‘“‘mc-worker” is an abstract task name which is mapped by
the task file into the appropriate binary file for the
machine where it is ezecuted.

"mc-worker",

e This spawn request does not specify any command line
arguments with which to invoke the ““mc-worker” process.
nil,
0,

o The ““mc-worker” process is to be executed with WorkDirPath
as its current working directory.
WorkDirPath
)

end

SpawnManager: procedure()
effects: Requests that a remote Monte-Carlo submanager process be spawned.
begin
o Note: These arguments may be known statically as constants

or can be computed dynamically as a function of command-line
arguments and incoming messages.

ManagerLib_SpawnManager (
® ‘“‘mc-manager” is an abstract task name which is mapped by
the task file into the appropriate binary file for the
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machine where it is ezecuted.
"mc-manager",

e There are NMgrArgs command-line arguments to ‘“mc-manager”,
contained in the MgrArgs array. In this case we are simply
passing our own command-line arguments to our submuangers.

MgrArgs,

NMgrArgs,

e The ‘““mc-manager” process is to be ezecuted with
WorkDirPath as its current working directory.
WorkDirPath,

¢ The abstract-to-concrete mappings for task names to
executables to use in resolving task names for deeper
spawn requests.

TaskFilePath,

e The requested submanager is not essential, so don’t
delegate responsibility for this task when we terminate
if it is not yet ective.

FALSE,

o WorkEstimate and WorkEztensionEstimate specify the
estimated processing times for “‘mc-manager” (in seconds
for a machine with a task-specific work-rating of unity).

WorkEstimate,

WorkExtensionEstimate,

o WarnTime sets the absolute amount of werning time (in
seconds) that should be provided to ‘‘mc-manager” if
it becomes necessary to forcibly terminate it.

WarnTime,

e MC_ALLOWANCE specifies the relative funding allowance
for the new ““mc-manager” task. Since each submanager is
spawned with the same allowance, funding is divided evenly
among them.

MC_ALLOWANCE,

e Setting the time weight to 1.0 and the price weight to 0.0
specifies a preference for scheduling ‘“mc-manager” on
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the machine with the soonest completion time, no matter
what the price.

1.0,

0.0,

o Finally, we specify that tasks owned by the same user may
compete, but that tasks in the same group should not compete.

ManagerLib_SelfGroupId(),

FALSE,

ManagerLib._SelfUserId(),

TRUE

)

NSubmanagers := NSubmanagers + 1
NFundedSubmanagers := NSubmanagers + 1
end

e Spawn Message Handlers
HandleAttachMessage: procedure(taskld: integer, taskName: string)
modifies: NSubmanagers (global)
effects: Processes an APPLICATION_ATTACH message. Adjusts the global count
of active submanagers.
begin
NSubmanagers := NSubmanagers + 1
end

HandleDetachMessage: procedure(taskld: integer, allowance: real)
modifies: NSubmanagers, NFundedSubmanagers (globals)
effects: Processes an APPLICATION_DETACH or APPLICATION_ABORT message.
Adjusts the global count of active submanagers. If a funded sub-
manager has been lost (allowance > 0), a replacement submanager is
spawned.
begin
NSubmanagers := NSubmanagers - 1
if allowance > 0.0 then
NFundedSubmanagers := NFundedSubmanagers - 1
endif

o If we lost a funded submanager, replace it with a new one.
if NFundedSubmanagers < MC_BRANCH then
SpawnManager ()



APPENDIX B. A SPAWN APPLICATION 72

endif
end

HandleProgressMessage: procedure(taskId: integer,
buffer: array of character, length: integer)

modifies: Progress (global)
effects: Processes an APPLICATION_MESSAGE message. Combines incremental
progress encoded by buffer with aggregate Progress.

incrementalProgress: MonteCarloState

begin
DecodeProgress(incrementalProgress, buffer, length)
CombineProgress(Progress, incrementalProgress)
NReports := NReports + 1

e Report pregress te higher management after NSubmanagers reports.
if (NReports mod NSubmanagers) = 0 then
ReportProgress(Progress)
ResetProgress(Progress)
endif
end

® Main Program
begin
e Register Interrupt() procedure as handler for Uniz SIGTERM signal.
e Initialize
ManagerLib.Initialize()

Initialize(Progress)

e Set NMgrArgs, MgrArgs using information in command-line arguments.
May also set various other state variables using this information.

o Register message handlers for dispatch on incoming messages.
ManagerLib_RegisterHandler (APPLICATION.MESSAGE ,HandleProgressMessage)
ManagerLib_RegisterHandler (APPLICATION_ATTACH, HandleAttachMessage)
ManagerLib_RegisterHandler (APPLICATION_DETACH, HandleDetachMessage)
ManagerLib_RegisterHandler (APPLICATION.ABORT, HandleDetachMessage)

o Allocate nothing for self preservation, giving all incoming funding to children.
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ManagerLib_SetSelfAllowance(0.0)

e Explicitly decline the purchase of extensions.
ManagerLib_DeclineExtensions()

e Get inherited path data from our own task description.
ManagerLib_SelfPathInfo(WorkDirPath, TaskFilePath)

e Spawn a local worker.
SpawnWorker()

@ Request that MC_BRANCH remote managers be spawned.
for i:intager := 1 to MC_BRANCH do

SpawnManager ()
endfor

¢ Process incoming messages.
while true do

o Block until message or interrupt is pending.

if ManagerLib_PendingMessage(nil) then
o Dispatch to appropriate registered handler.
ManagerLib_HardleMessage()

endif

o If terminating, make final progress report and die.
if TerminateFlag then
ReportProgress(Progress)
Terminate()
endif

endvhile

end
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B.4 A Smarter Manager Module

o “Smart” Spawn Application Manager Module
o A Manager for Distributed Monte-Carlo Computations.

e This manager implements a more sophisticated funding strategy: Maintain at least
MC_BRANCH submanagers, but only fund the least ezpensive MC_BRANCH subman-
agers at any given time. If at any time there are fewer than MC_BRANCH subman-
agers, spawn more. This manager uses cost metrics in allocating funds. A more
sophisticated application manager could also take relative progress into account when
allocating funds.

e Types
Child: record
taskld: integer
vnitPrice: real
end

MonteCarloState: record
o Application-dependent state.
unitPrice: real
end

o Constants

MC_ALLOWANCE = 1.0
MC_BRANCH = 2

¢ Global State
TaskFilePath, WorkDirPath: string
MgrArgs: array of string
NMgrArgs: integer
TerminateFlag: boolean
NReports: integer
Progress: MonteCarloState

Children: HashTable of Child
PendingChildren: integer

FundedChildren: array of Child
NFunded: integer
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Interrupt: procedure()

modifies: TerminateFlag (global)
effects: Sets global termination flag in response to an asynchronous termination
signal from the operating system.
begin
¢ set global termination flag
TerminateFlag := true
end

Terminate: proceduve()
modifies: everything
effects: Cleans up and exits process.
begin
® Close any open files, etc., and call Uniz exit().
end

o Child Manageinent Operations

o Specification only.
CheapestChildren: procedure(children: HashTable of Child, n: integer,
cheapest: array of Child, nCheapest: integer)

requires: cheapest has > n elements.
modifies: cheapest, nCheapest
effects: Sets nCheapest = min(n, number of elements in children). Finds the
nCheapest elements of children with the least expensive price per unit
time. Sets the first nCheapest elements of cheapest to these children.

FundChildren: procedure(old, new: array of Child, nOld, nNew: integer)
effects: Changes the relative allocation of funding to children. Completely halts
new funding to the nOld children in old. Funds each of the nNew
children in new equally.
begin
o A straight-forward implementation. Note that this could be
optimized by avoiding any changes to the elements of old N new.

for i:integer := i to n0Old do
ManagerLib_SetFundingAllowance(old[i].taskId, 0.0)

andfor

for i:integer := 1 to nNew do
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ManagerLib_SetFundingAllowance(new[i].taskId, MC_ALLOWANCE)
endfor
end

AllocateFunding: procedure(children: HashTable of Child)

modifies: FundedChildren, NFunded (globals)
effects: Changes the relative funding allocations to fund the MC_BRANCH sub-
managers which are currently the least expensive. If fewer than MC_BRANCH
submangers exist, spawns more.
begin

bestChildren: array of Child

nBest: integer

nSpawn: integer

CheapestChildren(children, MC_BRANCH, bestChildren, nBest)
FundChildren (FundedChildren, NFunded, bestChildren, nBest)

o Update information about currently funded children.
FundedChildren := bestChildren
NFunded := nBest

e If too few children, spawn some more.
nSpawn := MC_BRANCH - nBest - PendingChildren
if (nSpawn > 0)
for i:integer := 1 to nSpawn do
SpawnManager ()
endfor
endif
end

e Specification only.
ResetProgress: procedure(progress: MonteCarloState)
modifies: progress
effects: Initializes (clears) progress.

Initialize: procedure(newProgress: MonteCarloState)
modifies: newProgress
effects: Performs all necessary initialization. Clears newProgress.
begin
TerminateFlag := false
ResetProgress(newProgress)
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HashTable_Initialize(Children)
HashTable_Initialize(FundedChildren)
PendingChildren := 0

NFunded := 0

NReports := 0

e Perform any other necessary initializations.
end

e Specification only.
EncodeProgress: procedure(incrementalProgress: MonteCarloState,
buffer: acray of character, length: integer)

requires: buffer is large enough to hold encoded progress
modifies: buffer, length
effects: Uses Sun’s external data representation (XDR) routines to encode the
information in incrementalProgress in a machine-independent manner.
Sets length to the size of the encoded data, and places the encoded
results into buffer[l..length).

o Specification only.
DecodeProgress: procedure(incrementalProgress: MonteCarloState,
buffer: array of character, length: integer)

requires: buffer is large enough to hold encoded progress
modifies: incrementalProgress
effects: Uses Sun’s external data representation (XDR) routines to decode the
machine-independent progress information encoded by buffer(1..length],
placing the decoded results in incrementalProgress.

ReportProgress: procedure(incrementalProgress: MonteCarloState)
effects: Encodes incrementalProgress as an application message and delivers it
to our manager.

buffer: array of character
length: integer

begin
EncodeProgress(incrementalProgress, buffer, length)
ManagerLib.MessageToSponsor(buffer, length)

end

SpawnWorker: procedure()
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effects: Spawns a local Monte-Carlo worker process.
begin
ManagerLib_SpawnWorker(
¢ “mc-worker” is an abstract task name which is mapped by
the task file into the appropriate binary file for the
machine where it is ezecuted.
"mc-worker",

e This spawn request does not specify any command line
arguments with which to invoke the ‘“‘mc-worker” process.
nil,
0,

o The ““mc-worker” process is to be executed with WorkDirPath
as its current working directory.
WorkDirPath
)

end

SpawnManager: procedure()

78

effects: Requests that a remote Monte-Carlo submanager process be spawned.

begin
o Note: These arguments may be known statically as constants
or can be computed dynamically as a function of command-line
arguments and incoming messages.

ManagerLib_SpawnManager (
e ‘“‘mc-manager” is an abstract task name which is mapped by
the task file into the appropriate binary file for the
machine where it is executed.
"mc-manager",

e There are NMgrArgs command-line arguments to ““mc-manager”,

contained in the MgrArga array. In this case we are simply
passing our own command-line arguments to our submangers.
MgrArgs,
NMgrArgs,

o The ““mc-manager” process is to be executed with
WorkDirPath as its current working directory.
WorkDirPath,
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o The abstract-to-concrete mappings for task names to
ezecutables to use in resolving task names for deeper
spawn requests.

TaskFilePath,

o The requested submanager is not essential, so don’t
delegate responsibility for this task when we terminate
if it is not yet active.

FALSE,

e WorkEstimate and WorkEztensionEstimate specify the
estimated processing times for ‘“‘mc-manager” (in seconds
for @ machine with a task-specific work-rating of unity).

WorkEstimate,

WorkExtensionEstimate,

o WarnTime sets the absolute amount of warning time (in
seconds) that should be provided to ‘‘mc-manager” if
it becomes necessary to forcibly terminate it.

WarnTime,

o MC_ALLOWANCE specifies the relative funding allowance
for the new ‘““mc-manager” task. Since each submanager is
spawned with the seme allowance, funding is divided evenly
among them.

MC_ALLOWANCE,

o Selting the time weight to 1.0 and the price weight to 0.0
specifies a preference for scheduling ‘“‘mc-manager” on
the machine with the soonest completion time, no matter
what the price.

1.0,

0.0,

e Finally, we specify that tasks owned by the same user may

compete, but that tasks in the same group should not compete.

Ma.na.gerLib.SelfGroupId() ,
FALSE,
ManagerLib_SelfUserId(),
TRUE

)

79
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PendingChildren := PendingChildren + 1
end

e Spawn Message Handlers
HandieAttachMessage: procedure(taskld: integer, taskName: string)
modifies: Children (global)
effects: Processes an APPLICATION_ATTACH message. Constructs a Child struc-
ture for the newly attached task, and inserts it into Children. Adjusts
relative funding allocation for children.
c: Child
begin
c.taskId := taskId
c.unitPrice := nil

o Insert new child with key = taskld, data = c.
HashTable_Insert(Children, taskId, c)
AllocateFunding()

end

HandleDetachMessage: procedure(taskld: integer, allowance: real)

modifies: Children (global)
effects: Processes an APPLICATION_DETACH or APPLICATION_ABORT message.
Removes the Child structure for the newly detached task from Children.
Adjusts relative funding allocation for remaining children.
begin
HashTable_Remove(Children, taskId)
AllocateFunding()
end

HandleProgressMessage: procedure(taskId: integer,
buffer: array of character, length: integer)

modifies: Progress (global)
effects: Processes an APPLICATION_.MESSAGE message. Combines incremental
progress encoded by buffer with aggregate Progress. Updates cost in-
formation for the child reporting progress. Adjusts relative funding
allocation for remaining children.

incrementalProgress: HonteCarloState

begin
DecodeProgress(incrementalProgress, buffer, length)
CombineProgress(Progress, incrementalProgress)
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NReports := NReports + 1

e Report progress to higher management after NSubmanagers reports.
if (NReports mod NSubmanagers) = 0 then
ReportProgress(Progress)
ResetProgress(Progress)
endif

e Update unit price for child reporting progress.
c := HashTable.Lookup(Children, taskId)
if ¢ # nil then
c.unitPrice := incrementalProgress.unitPrice
AllocateFunding()
endif
end

HandleManagerBiddingMessage: procedure(taskId: integer)
modifies: Children (global)
effects: Processes an APPLICATION_.MANAGER_BIDDING message. Constructs a
Child structure for the new task, and inserts it into Children. Adjusts
relative funding allocation for children.
c: Child
begin
c.taskId := taskld
c.unitPrice := nil

e Insert new child with key = taskld, data = c.
HashTable_Insert (Children, taskld, c)
AllocateFunding()

end

HandleExtendMessage: procedure(length, funds: real)
modifies: Progress (global)
effects: Processes an APPLICATION_EXTEND message. Sets our own unit price
to funds / length.
begin
e Update global unit price information.
if length # 0.0 then

Progress.unitPrice := funds / length
endif
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o Release all extra money in reservoir to children.
ManagerLib_ReleaseReservoir(1.0)
end

@ Main Program
begin
® Register Interrupt() procedure as handler for Uniz SIGTERM signal.

o Initialize
ManagerLib._Initialize()
Initialize(Progress)

e Set NMgrArgs, MgrArgs using information in command-line arguments.
May also set various other state variables using this information.

o Register message handlers for dispatch on incoming messages.
ManagerLib.RegisterHandler (APPLICATION_MESSAGE ,HandleProgressMessage)
ManagerLib_RegisterHandler (APPLICATION_ATTACH, HandleAttachMessage)
ManagerLib. RegisterHandler (APPLICATION.DETACH, HandleDetachMessage)
ManagerLib_RegisterHandler (APPLICATION_ABORT, HandleDetachMessage)
ManagerLib_RegisterHandler (APPLICATION_EXTEND, HandleExtendMessage)
ManagerLib_RegisterHandler (APPLICATION_MANAGER_BIDDING,
HandleManagerBiddingMessage)

o Initialize global unit price information.
ManagerLib_SelfPurchaseInfo(time, funds)
if time # 0.0 then

Progress.unitPrice := funds / time
endif

o Allocate some money for self preservation.
Divert a portion of incoming funding to reservoir for extensions.
ManagerLib_SetSelfAllowance(MC_ALLOWANCE)

e Get inherited path data from our own task description.
ManagerLib_SelfPathInfo(WorkDirPath, TaskFilePath)

e Spawn a local worker.
SpawnWorker ()
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e Request that MC_BRANCH remote managers be spawned.

for i:integer := 1 to MC_BRANCH do
SpawnManager ()
endfor

® Process incoming messages.
while true do

e Block until message or interrupt is pending.

if ManagerLib_PendingMessage(nil) then
o Dispatch to appropriate registered handler.
ManagerLib_HandleMessage()

endif

o If terminating, make final progress report and die.
if TerminateFlag then
ReportProgress(Progress)
Terminate()
endif

endwhile

end

83
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B.5 Root Manager Module

o Root Application Manager Module
o A Top-Level Manager for Distributed Monte-Carlo Computations.

o Note: A root application manager is nearly identical to an ordinary application
manager. The importan: differences are: (1) the root manager presents progress to
the top-level user, and (2) the root manager controls the overall amount and rate
of funding that is “pumped” into the sponsorship hierarchy. Only the code for these
special root operations is given below; the remainder of the program is identical to the
ordinary application manager code.

ReportProgress: procedure(incrementalProgress: MonteCarloState)
modifies: Progress (global)
effects: Combines incrementalProgress with global Progress. Processes top-
level aggregate data (e.g. saving it to a file, displaying it to top-level

user, etc.)
begin
e Log aggregate progress to user-interface or file.
end

o Main Program
begin

userName, groupName, localTaskFilePath: string
® Register Interrupt() procedure as handler for Uniz SIGTERM signal.

o Set NMgrArgs, MgrArgs, local TaskFilePath, userName, and
groupName using information in command-line arguments.
May also set various other state variables using this information.

e Initialize
ManagerLib.RootInitialize(userName, groupName, localTaskFilePath)
Initialize(Progress)

o Register message handlers for dispatch on incoming messages.
ManagerLib_RegisterHandler (APPLICATION_MESSAGE ,HandleProgressMessage)
ManagerLib_RegisterHandler (APPLICATION_ATTACH, HandleAttachMessage)
ManagerLib_RegisterHandler (APPLICATION_DETACH, HandleDetachMessage)
ManagerLib_RegisterHandler (APPLICATION_ABORT, HandleDetachMarssage)
ManagerLib_RegisterHandler (APPLICATION_EXTEND, HandleExtendMessage)
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ManagerLib_RegisterHaudler (APPLICATION MANAGER_BIDDING,
HandleManagerBiddingMessage) ;

e Initialize global unit price information.
The root manager runs for free on the owner’s workstation.
Progress.unitPrice := 0.0

o Allocate nothing for self preservation, giving all incoming
funding to children.
ManagsrLib_SetSelfAllowance(0.0)

e Get inherited path data from our own task description.
ManagerLib_SelfPathInfo(WorkDirPath, TaskFilePath)

e Do not spawn any local workers.

e Request that MC_BRANCH remote managers be spawned.
for i:integer := 1 to MC_BRANCH do

SpawnManager ()
endfor

o Control sncremental funding via ManagerLib or top-level Spawn
user-interface. This call specifies linear funding. Ezplicit,
discrete funding drops may also be specified via calls to
ManagerLib_RootDre-tFunding(amount).

ManagerLib_SetRootFunding(budget, dropSize, period)

e Process incoming messages.
while true do

e Block until message or interrupt is pending.
if ManagerLib_PendingMessage(nil) then
o Dispatch to appropriate registered handler.
ManagerLib_HandleMessege()
endif

@ If terminating, make final top-level progress report and die.
if TerminatoFlag then

ReportProgress(Progress)

Terminatc ()
endif

o

-t
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endwhile

end

86
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B.6 Application Task File

In order to execute an application, the programmer must specify a task file, which
maps abstract task names and machine types into concrete network path names for
executable files. An abstract name and machine configuration is resolved using the

first matching entry in the task file. The general format is as follows:

task abstract-task-name
cpu  hardware-family hardware-model hardware-special
bin nfs-style-pathname
work machine-specific-raling

cpu

task ...

A task file for the sample Monte Carlo application is given below. It indicates
that executable versions of the mc-manager and mc-worker tasks exist for Sun3/140,
Sun4/110, and Sun4/260 workstations. Furthermore, the relative power of each hard-
ware configuration for each task is specified in the work field. Note, for example, that
a Sun3/140 with floating point hardware (£p) runs this particular application twice
as fast as a Sun3/140 without special hardware (* matches anything).

task mc-manager

cpu sun3d 140 fp
bin pooh:/usr/waldspurger/bin/sun3/mc-manager
work 0.4

cpu sun3 140 *
bin pooh:/usr/waldspurger/bin/sun3/mc-manager
work 0.2

cpu sun4 110 »
bin bear:/u/huberman/bin/mc-manager
work 1.0

cpu sun4g 260 *
bin bear:/u/hubermax/bin/mc-manager
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work 1.4
task mc-worker

cpu sun3 140 fp
bin pooh:/usr/waldspurger/bin/sun3/mc-worker
work 0.4

cpu sun3d 140 *
bin pooh:/usr/waldspurger/bin/sun3/mc-worker
work 0.2

cpu sund 110 *
bin bear:/u/huberman/bin/mc-worker
work 1.0

cpu sund 260 =*
bin bear:/u/huberman/din/mc-worker
work 1.4
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