
USENIX Association  7th USENIX Conference on File and Storage Technologies 85

PARDA: Proportional Allocation of Resources for Distributed Storage Access

Ajay Gulati Irfan Ahmad Carl A. Waldspurger
VMware Inc.

{agulati,irfan,carl}@vmware.com

Abstract

Rapid adoption of virtualization technologies has led to
increased utilization of physical resources, which are mul-
tiplexed among numerous workloads with varying demands
and importance. Virtualization has also accelerated the de-
ployment of shared storage systems, which offer many ad-
vantages in such environments. Effective resource manage-
ment for shared storage systems is challenging, even in re-
search systems with complete end-to-end control over all
system components. Commercially-available storage arrays
typically offer only limited, proprietary support for control-
ling service rates, which is insufficient for isolating work-
loads sharing the same storage volume or LUN.

To address these issues, we introduce PARDA, a novel
software system that enforces proportional-share fairness
among distributed hosts accessing a storage array, without
assuming any support from the array itself. PARDA uses
latency measurements to detect overload, and adjusts issue
queue lengths to provide fairness, similar to aspects of flow
control in FAST TCP. We present the design and implemen-
tation of PARDA in the context of VMware ESX Server,
a hypervisor-based virtualization system, and show how it
can be used to provide differential quality of service for
unmodified virtual machines while maintaining high effi-
ciency. We evaluate the effectiveness of our implementa-
tion using quantitative experiments, demonstrating that this
approach is practical.

1 Introduction

Storage arrays form the backbone of modern data centers
by providing consolidated data access to multiple applica-
tions simultaneously. Deployments of consolidated storage
using Storage Area Network (SAN) or Network-Attached
Storage (NAS) hardware are increasing, motivated by easy
access to data from anywhere at any time, ease of backup,
flexibility in provisioning, and centralized administration.
This trend is further fueled by the proliferation of virtualiza-
tion technologies, which rely on shared storage to support
features such as live migration of workloads across hosts.

A typical virtualized data center consists of multi-
ple physical hosts, each running several virtual machines

(VMs). Many VMs may compete for access to one or more
logical units (LUNs) on a single storage array. The result-
ing contention at the array for resources such as controllers,
caches, and disk arms leads to unpredictable IO comple-
tion times. Resource management mechanisms and policies
are required to enable performance isolation, control service
rates, and enforce service-level agreements.

In this paper, we target the problem of providing coarse-
grained fairness to VMs, without assuming any support
from the storage array itself. We also strive to remain work-
conserving, so that the array is utilized efficiently. We fo-
cus on proportionate allocation of IO resources as a flexible
building block for constructing higher-level policies. This
problem is challenging for several reasons, including the
need to treat the array as an unmodifiable black box, unpre-
dictable array performance, uncertain available bandwidth,
and the desire for a scalable decentralized solution.

Many existing approaches [13, 14, 16, 21, 25, 27, 28] al-
locate bandwidth among multiple applications running on
a single host. In such systems, one centralized scheduler
has complete control over all requests to the storage system.
Other centralized schemes [19, 30] attempt to control the
queue length at the device to provide tight latency bounds.
Although centralized schedulers are useful for host-level IO
scheduling, in our virtualized environment we need an ap-
proach for coordinating IO scheduling across multiple inde-
pendent hosts accessing a shared storage array.

More decentralized approaches, such as Triage [18],
have been proposed, but still rely on centralized measure-
ment and control. A central agent adjusts per-host band-
width caps over successive time periods and communicates
them to hosts. Throttling hosts using caps can lead to sub-
stantial inefficiency by under-utilizing array resources. In
addition, host-level changes such as VMs becoming idle
need to propagate to the central controller, which may cause
a prohibitive increase in communication costs.

We instead map the problem of distributed storage ac-
cess from multiple hosts to the problem of flow control in
networks. In principle, fairly allocating storage bandwidth
with high utilization is analogous to distributed hosts trying
to estimate available network bandwidth and consuming it
in a fair manner. The network is effectively a black box to
the hosts, providing little or no information about its current



86 7th USENIX Conference on File and Storage Technologies USENIX Association

state and the number of participants. Starting with this loose
analogy, we designed PARDA, a new software system that
enforces coarse-grained proportional-share fairness among
hosts accessing a storage array, while still maintaining high
array utilization.

PARDA uses the IO latency observed by each host as an
indicator of load at the array, and uses a control equation
to adjust the number of IOs issued per host, i.e., the host
window size. We found that variability in IO latency, due
to both request characteristics (e.g., degree of sequentiality,
reads vs. writes, and IO size) and array internals (e.g., re-
quest scheduling, caching and block placement) could be
magnified by the independent control loops running at each
host, resulting in undesirable divergent behavior.

To handle such variability, we found that using the av-
erage latency observed across all hosts as an indicator of
overall load produced stable results. Although this approach
does require communication between hosts, we need only
compute a simple average for a single metric, which can
be accomplished using a lightweight, decentralized aggre-
gation mechanism. PARDA also handles idle VMs and
bursty workloads by adapting per-host weights based on
long-term idling behavior, and by using a local scheduler
at the host to handle short-term bursts. Integrating with a
local proportional-share scheduler [10] enables fair end-to-
end access to VMs in a distributed environment.

We implemented a complete PARDA prototype in the
VMware ESX Server hypervisor [24]. For simplicity, we
assume all hosts use the same PARDA protocol to ensure
fairness, a reasonable assumption in most virtualized clus-
ters. Since hosts run compatible hypervisors, PARDA can
be incorporated into the virtualization layer, and remain
transparent to the operating systems and applications run-
ning within VMs. We show that PARDA can maintain
cluster-level latency close to a specified threshold, provide
coarse-grained fairness to hosts in proportion to per-host
weights, and provide end-to-end storage IO isolation to
VMs or applications while handling diverse workloads.

The next section presents our system model and goals
in more detail. Section 3 develops the analogy to network
flow control, and introduces our core algorithm, along with
extensions for handling bursty workloads. Storage-specific
challenges that required extensions beyond network flow
control are examined in Section 4. Section 5 evaluates our
implementation using a variety of quantitative experiments.
Related work is discussed in section 6, while conclusions
and directions for future work are presented in Section 7.

2 System Model

PARDA was designed for distributed systems such as the
one shown in Figure 1. Multiple hosts access one or more
storage arrays connected over a SAN. Disks in storage ar-

rays are partitioned into RAID groups, which are used to
construct LUNs. Each LUN is visible as a storage device to
hosts and exports a cluster filesystem for distributed access.
A VM disk is represented by a file on one of the shared
LUNs, accessible from multiple hosts. This facilitates mi-
gration of VMs between hosts, avoiding the need to transfer
disk state.

Since each host runs multiple virtual machines, the IO
traffic issued by a host is the aggregated traffic of all its
VMs that are currently performing IO. Each host maintains
a set of pending IOs at the array, represented by an issue
queue. This queue represents the IOs scheduled by the host
and currently pending at the array; additional requests may
be pending at the host, waiting to be issued to the storage
array. Issue queues are typically per-LUN and have a fixed
maximum issue queue length1 (e.g., 64 IOs per LUN).

Figure 1: Storage array accessed by distributed hosts/VMs.

IO requests from multiple hosts compete for shared re-
sources at the storage array, such as controllers, cache, in-
terconnects, and disks. As a result, workloads running on
one host can adversely impact the performance of work-
loads on other hosts. To support performance isolation, re-
source management mechanisms are required to specify and
control service rates under contention.

Resource allocations are specified by numeric shares,
which are assigned to VMs that consume IO resources.2 A
VM is entitled to consume storage array resources propor-
tional to its share allocation, which specifies the relative im-
portance of its IO requests compared to other VMs. The IO
shares associated with a host is simply the total number of
per-VM shares summed across all of its VMs. Proportional-
share fairness is defined as providing storage array service
to hosts in proportion to their shares.

In order to motivate the problem of IO scheduling across
multiple hosts, consider a simple example with four hosts
running a total of six VMs, all accessing a common shared
LUN over a SAN. Hosts 1 and 2 each run two Linux VMs
configured with OLTP workloads using Filebench [20].

1The terms queue length, queue depth, and queue size are used inter-
changeably in the literature. In this paper, we will also use the term window
size, which is common in the networking literature.

2Shares are alternatively referred to as weights in the literature. Al-
though we use the term VM to be concrete, the same proportional-share
framework can accommodate other abstractions of resource consumers,
such as applications, processes, users, or groups.



USENIX Association  7th USENIX Conference on File and Storage Technologies 87

Host VM Types s1, s2 V M1 V M2 Th
1 2×OLTP 20, 10 823 Ops/s 413 Ops/s 1240
2 2×OLTP 10, 10 635 Ops/s 635 Ops/s 1250
3 1×Micro 20 710 IOPS n/a 710
4 1×Micro 10 730 IOPS n/a 730

Table 1: Local scheduling does not achieve inter-host fairness.
Four hosts running six VMs without PARDA. Hosts 1 and 2 each
run two OLTP VMs, and hosts 3 and 4 each run one micro-
benchmark VM issuing 16 KB random reads. Configured shares
(si), Filebench operations per second (Ops/s), and IOPS (Th for
hosts) are respected within each host, but not across hosts.

Hosts 3 and 4 each run a Windows Server 2003 VM with
Iometer [1], configured to generate 16 KB random reads.
Table 1 shows that the VMs are configured with different
share values, entitling them to consume different amounts
of IO resources. Although a local start-time fair queuing
(SFQ) scheduler [16] does provide proportionate fairness
within each individual host, per-host local schedulers alone
are insufficient to provide isolation and proportionate fair-
ness across hosts. For example, note that the aggregate
throughput (in IOPS) for hosts 1 and 2 is quite similar, de-
spite their different aggregate share allocations. Similarly,
the Iometer VMs on hosts 3 and 4 achieve almost equal per-
formance, violating their specified 2 : 1 share ratio.

Many units of allocation have been proposed for sharing
IO resources, such as Bytes/s, IOPS, and disk service time.
Using Bytes/s or IOPS can unfairly penalize workloads with
large or sequential IOs, since the cost of servicing an IO
depends on its size and location. Service times are difficult
to measure for large storage arrays that service hundreds of
IOs concurrently.

In our approach, we conceptually partition the array
queue among hosts in proportion to their shares. Thus two
hosts with equal shares will have equal queue lengths, but
may observe different throughput in terms of Bytes/s or
IOPS. This is due to differences in per-IO cost and schedul-
ing decisions made within the array, which may process
requests in the order it deems most efficient to maximize
aggregate throughput. Conceptually, this effect is similar
to that encountered when time-multiplexing a CPU among
various workloads. Although workloads may receive equal
time slices, they will retire different numbers of instruc-
tions due to differences in cache locality and instruction-
level parallelism. The same applies to memory and other
resources, where equal hardware-level allocations do not
necessarily imply equal application-level progress.

Although we focus on issue queue slots as our primary
fairness metric, each queue slot could alternatively repre-
sent a fixed-size IO operation (e.g., 16 KB), thereby provid-
ing throughput fairness expressed in Bytes/s. However, a
key benefit of managing queue length instead of throughput
is that it automatically compensates workloads with lower

per-IO costs at the array by allowing them to issue more
requests. By considering the actual cost of the work per-
formed by the array, overall efficiency remains higher.

Since there is no central server or proxy performing IO
scheduling, and no support for fairness in the array, a per-
host flow control mechanism is needed to enforce speci-
fied resource allocations. Ideally, this mechanism should
achieve the following goals: (1) provide coarse-grained
proportional-share fairness among hosts, (2) maintain high
utilization, (3) exhibit low overhead in terms of per-host
computation and inter-host communication, and (4) control
the overall latency observed by the hosts in the cluster.

To meet these goals, the flow control mechanism must
determine the maximum number of IOs that a host can keep
pending at the array. A naive method, such as using static
per-host issue queue lengths proportional to each host’s IO
shares, may provide reasonable isolation, but would not be
work-conserving, leading to poor utilization in underloaded
scenarios. Using larger static issue queues could improve
utilization, but would increase latency and degrade fairness
in overloaded scenarios.

This tradeoff between fairness and utilization suggests
the need for a more dynamic approach, where issue queue
lengths are varied based on the current level of contention
at the array. In general, queue lengths should be increased
under low contention for work conservation, and decreased
under high contention for fairness. In an equilibrium state,
the queue lengths should converge to different values for
each host based on their share allocations, so that hosts
achieve proportional fairness in the presence of contention.

3 IO Resource Management

In this section we first present the analogy between flow
control in networks and distributed storage access. We then
explain our control algorithm for providing host-level fair-
ness, and discuss VM-level fairness by combining cluster-
level PARDA flow control with local IO scheduling at hosts.

3.1 Analogy to TCP

Our general approach maps the problem of distributed stor-
age management to flow control in networks. TCP running
at a host implements flow control based on two signals from
the network: round trip time (RTT) and packet loss proba-
bility. RTT is essentially the same as IO request latency
observed by the IO scheduler, so this signal can be used
without modification.

However, there is no useful analog of network packet
loss in storage systems. While networking applications ex-
pect dropped packets and handle them using retransmission,
typical storage applications do not expect dropped IO re-
quests, which are rare enough to be treated as hard failures.



88 7th USENIX Conference on File and Storage Technologies USENIX Association

Thus, we use IO latency as our only indicator of con-
gestion at the array. To detect congestion, we must be able
to distinguish underloaded and overloaded states. This is
accomplished by introducing a latency threshold parame-
ter, denoted by L . Observed latencies greater than L

may trigger a reduction in queue length. FAST TCP, a
recently-proposed variant of TCP, uses packet latency in-
stead of packet loss probability, because loss probability
is difficult to estimate accurately in networks with high
bandwidth-delay products [15]. This feature also helps in
high-bandwidth SANs, where packet loss is unlikely and
TCP-like AIMD (additive increase multiplicative decrease)
mechanisms can cause inefficiencies. We use a similar
adaptive approach based on average latency to detect con-
gestion at the array.

Other networking proposals such as RED [9] are based
on early detection of congestion using information from
routers, before a packet is lost. In networks, this has the
added advantage of avoiding retransmissions. However,
most proposed networking techniques that require router
support have not been adopted widely, due to overhead and
complexity concerns; this is analogous to the limited QoS
support in current storage arrays.

3.2 PARDA Control Algorithm

The PARDA algorithm detects overload at the array based
on average IO latency measured over a fixed time period,
and adjusts the host’s issue queue length (i.e., window size)
in response. A separate instance of the PARDA control al-
gorithm executes on each host.

There are two main components: latency estimation and
window size computation. For latency estimation, each host
maintains an exponentially-weighted moving average of IO
latency at time t, denoted by L(t), to smooth out short-term
variations. The weight given to past values is determined
by a smoothing parameter α ∈ [0,1]. Given a new latency
observation l,

L(t) = (1−α)× l + α ×L(t −1) (1)

The window size computation uses a control mechanism
shown to exhibit stable behavior for FAST TCP:

w(t + 1) = (1− γ)w(t) + γ
�

L

L(t)
w(t)+ β

�

(2)

Here w(t) denotes the window size at time t, γ ∈ [0,1] is a
smoothing parameter, L is the system-wide latency thresh-
old, and β is a per-host parameter that reflects its IO shares
allocation.

Whenever the average latency L > L , PARDA decreases
the window size. When the overload subsides and L < L ,
PARDA increases the window size. Window size adjust-
ments are based on latency measurements, which indicate

load at the array, as well as per-host β values, which specify
relative host IO share allocations.

To avoid extreme behavior from the control algorithm,
w(t) is bounded by [wmin,wmax]. The lower bound wmin pre-
vents starvation for hosts with very few IO shares. The up-
per bound wmax avoids very long queues at the array, limit-
ing the latency seen by hosts that start issuing requests after
a period of inactivity. A reasonable upper bound can be
based on typical queue length values in uncontrolled sys-
tems, as well as the array configuration and number of hosts.

The latency threshold L corresponds to the response
time that is considered acceptable in the system, and the
control algorithm tries to maintain the overall cluster-wide
latency close to this value. Testing confirmed our expecta-
tion that increasing the array queue length beyond a certain
value doesn’t lead to increased throughput. Thus, L can be
set to a value which is high enough to ensure that a suffi-
ciently large number of requests can always be pending at
the array. We are also exploring automatic techniques for
setting this parameter based on long-term observations of
latency and throughput. Administrators may alternatively
specify L explicitly, based on cluster-wide requirements,
such as supporting latency-sensitive applications, perhaps
at the cost of under-utilizing the array in some cases.

Finally, β is set based on the IO shares associated with
the host, proportional to the sum of its per-VM shares. It
has been shown theoretically in the context of FAST TCP
that the equilibrium window size value for different hosts
will be proportional to their β parameters [15].

We highlight two properties of the control equation,
again relying on formal models and proofs from FAST TCP.
First, at equilibrium, the throughput of host i is proportional
to βi/qi, where βi is the per-host allocation parameter, and
qi is the queuing delay observed by the host. Second, for a
single array with capacity C and latency threshold L , the
window size at equilibrium will be:

wi = βi + βi
CL

∑∀ j β j
(3)

To illustrate the behavior of the control algorithm, we
simulated a simple distributed system consisting of a sin-
gle array and multiple hosts using Yacsim [17]. Each host
runs an instance of the algorithm in a distributed manner,
and the array services requests with latency based on an ex-
ponential distribution with a mean of 1/C. We conducted
a series of experiments with various capacities, workloads,
and parameter values.

To test the algorithm’s adaptability, we experimented
with three hosts using a 1 : 2 : 3 share ratio, L = 200 ms, and
an array capacity that changes from 400 req/s to 100 req/s
halfway through the experiment. Figure 2 plots the through-
put, window size and average latency observed by the hosts
for a period of 200 seconds. As expected, the control al-
gorithm drives the system to operate close to the desired



USENIX Association  7th USENIX Conference on File and Storage Technologies 89

 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200

W
in

do
w

 s
iz

e

Time (s)

host1
host2
host3

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  50  100  150  200

Av
g 

La
te

nc
y 

(m
s)

Time (s)

host1
host2
host3

 0

 50

 100

 150

 200

 250

 0  50  100  150  200

Av
er

ag
e 

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

host1
host2
host3

(a) Window size (b) Average Latency (c) Throughput

Figure 2: Simulation of three hosts with 1 : 2 : 3 share ratio. Array capacity is reduced from 400 to 100 req/s at t = 100 s.

latency threshold L . We also used the simulator to verify
that as L is varied (100 ms, 200 ms and 300 ms), the sys-
tem latencies operate close to L , and that windows sizes
increase while maintaining their proportional ratio.

3.3 End-to-End Support

PARDA flow control ensures that each host obtains a fair
share of storage array capacity proportional to its IO shares.
However, our ultimate goal for storage resource manage-
ment is to provide control over service rates for the appli-
cations running in VMs on each host. We use a fair queu-
ing mechanism based on SFQ [10] for our host-level sched-
uler. SFQ implements proportional-sharing of the host’s is-
sue queue, dividing it among VMs based on their IO shares
when there is contention for the host-level queue.

Two key features of the local scheduler are worth noting.
First, the scheduler doesn’t strictly partition the host-level
queue among VMs based on their shares, allowing them
to consume additional slots that are left idle by other VMs
which didn’t consume their full allocation. This handles
short-term fluctuations in the VM workloads, and provide
some statistical multiplexing benefits. Second, the sched-
uler doesn’t switch between VMs after every IO, instead
scheduling a group of IOs per VM as long as they exhibit
some spatial locality (within a few MB). These techniques
have been shown to improve overall IO performance [3,13].

Combining a distributed flow control mechanism with a
fair local scheduler allows us to provide end-to-end IO al-
locations to VMs. However, an interesting alternative is to
apply PARDA flow control at the VM level, using per-VM
latency measurements to control per-VM window sizes di-
rectly, independent of how VMs are mapped to hosts. This
approach is appealing, but it also introduces new challenges
that we are currently investigating. For example, per-VM
allocations may be very small, requiring new techniques
to support fractional window sizes, as well as efficient dis-
tributed methods to compensate for short-term burstiness.

3.4 Handling Bursts

A well-known characteristic of many IO workloads is a
bursty arrival pattern—fluctuating resource demand due to
device and application characteristics, access locality, and
other factors. A high degree of burstiness makes it difficult
to provide low latency and achieve proportionate allocation.

In our environment, bursty arrivals generally occur at
two distinct time scales: systematic long-term ON-OFF be-
havior of VMs, and sudden short-term spikes in IO work-
loads. To handle long-term bursts, we modify the β value
for a host based on the utilization of queue slots by its resi-
dent VMs. Recall that the host-level parameter β is propor-
tional to the sum of shares of all VMs (if si are the shares
assigned to VM i, then for host h, βh = K ×∑i si, where K
is a normalization constant).

To adjust β , we measure the average number of outstand-
ing IOs per VM, nk, and each VM’s share of its host window
size as wk, expressed as:

wk =
sk

∑i si
w(t) (4)

If (nk < wk), we scale the shares of the VM to be
s′i = nk × sk/wk and use this to calculate β for the host.
Thus if a VM is not fully utilizing its window size, we re-
duce the β value of its host, so other VMs on the same host
do not benefit disproportionately due to the under-utilized
shares of a colocated idle VM. In general, when one or
more VMs become idle, the control mechanism will allow
all hosts (and thus all VMs) to proportionally increase their
window sizes and exploit the spare capacity.

For short-term fluctuations, we use a burst-aware local
scheduler. This scheduler allows VMs to accumulate a
bounded number of credits while idle, and then schedule
requests in bursts once the VM becomes active. This also
improves overall IO efficiency, since requests from a single
VM typically exhibit some locality. A number of schedulers
support bursty allocations [6, 13, 22]. Our implementation
uses SFQ as the local scheduler, but allows a bounded num-
ber of IOs to be batched from each VM instead of switching
among VMs purely based on their SFQ request tags.



90 7th USENIX Conference on File and Storage Technologies USENIX Association

4 Storage-Specific Challenges

Storage devices are stateful and their throughput can be
quite variable, making it challenging to apply the latency-
based flow control approaches used in networks. Equilib-
rium may not be reached if different hosts observe very dif-
ferent latencies during overload. Next we discuss three key
issues to highlight the differences between storage and net-
work service times.

Request Location. It is well known that the latency of a
request can vary from a fraction of a millisecond to tens of
milliseconds, based on its location compared to previous re-
quests, as well as caching policies at the array. Variability in
seek and rotational delays can cause an order of magnitude
difference in service times. This makes it difficult to esti-
mate the baseline IO latency corresponding to the latency
with no queuing delay. Thus a sudden change in average la-
tency or in the ratio of current values to the previous average
may or may not be a signal for overload. Instead, we look
at average latency values in comparison to a latency thresh-
old L to predict congestion. The assumption is that laten-
cies observed during congestion will have a large queuing
delay component, outweighing increases due to workload
changes (e.g., sequential to random).

Request Type. Write IOs are often returned to the host
once the block is written in the controller’s NVRAM. Later,
they are flushed to disk during the destage process. How-
ever, read IOs may need to go to disk more often. Similarly,
two requests from a single stream may have widely vary-
ing latencies if one hits in the cache and the other misses.
In certain RAID systems [5], writes may take four times
longer than reads due to parity reads and updates. In gen-
eral, IOs from a single stream may have widely-varying re-
sponse times, affecting the latency estimate. Fortunately, a
moving average over a sufficiently long period can absorb
such variations and provide a more consistent estimate.

IO Size. Typical storage IO sizes range from 512 bytes to
256 KB, or even 1 MB for more recent devices. The estima-
tor needs to be aware of changing IO size in the workload.
This can be done by computing latency per 8 KB instead
of latency per IO using a linear model with certain fixed
costs. Size variance is less of an issue in networks since
most packets are broken into MTU-size chunks (typically
1500 bytes) before transmission.

All of these issues essentially boil down to the problem
of estimating highly-variable latency and using it as an in-
dicator of array overload. We may need to distinguish be-
tween latency changes caused by workload versus those due
to the overload at the array. Some of the variation in IO la-
tency can be absorbed by long-term averaging, and by con-
sidering latency per fixed IO size instead of per IO request.
Also, a sufficiently high baseline latency (the desired oper-

ating point for the control algorithm, L ) will be insensitive
to workload-based variations in under-utilized cases.

4.1 Distributed Implementation Issues

We initially implemented PARDA in a completely dis-
tributed manner, where each host monitored only its own
IO latency to calculate L(t) for Equation 2 (referred to as
local latency estimation). However, despite the use of av-
eraging, we found that latencies observed at different hosts
were dependent on block-level placement.

We experimented with four hosts, each running one Win-
dows Server 2003 VM configured with a 16 GB data disk
created as a contiguous file on the shared LUN. Each VM
also has a separate 4 GB system disk. The storage array
was an EMC CLARiiON CX3-40 (same hardware setup as
in Section 5). Each VM executed a 16 KB random read IO
workload. Running without any control algorithm, we no-
ticed that the hosts observed average latencies of 40.0, 34.5,
35.0 and 39.5 ms, respectively. Similarly, the throughput
observed by the hosts were 780, 910, 920 and 800 IOPS re-
spectively. Notice that hosts two and three achieved better
IOPS and lower latency, even though all hosts were issuing
exactly the same IO pattern.

We verified that this discrepancy is explained by place-
ment: the VM disks (files) were created and placed in or-
der on the underlying device/LUN, and the middle two vir-
tual disks exhibited better performance compared to the two
outer disks. We then ran the control algorithm with latency
threshold L = 30 ms and equal β for all hosts. Figure 3
plots the computed window size, latency and throughput
over a period of time. The discrepancy in latencies observed
across hosts leads to divergence in the system. When hosts
two and three observe latencies smaller than L , they in-
crease their window size, whereas the other two hosts still
see latencies higher than L , causing further window size
decreases. This undesirable positive feedback loop leads to
a persistent performance gap.

To validate that this effect is due to block placement
of VM disks and array level scheduling, we repeated the
same experiment using a single 60 GB shared disk. This
disk file was opened by all VMs using a “multi-writer”
mode. Without any control, all hosts observed a through-
put of ∼ 790 IOPS and latency of 39 ms. Next we ran with
PARDA on the shared disk, again using equal β and L = 30
ms. Figure 4 shows that the window sizes of all hosts are
reduced, and the cluster-wide latency stays close to 30 ms.

This led us to conclude that, at least for some disk sub-
systems, latency observations obtained individually at each
host for its IOs are a fragile metric that can lead to diver-
gences. To avoid this problem, we instead implemented a
robust mechanism that generates a consistent signal for con-
tention in the entire cluster, as discussed in the next section.



USENIX Association  7th USENIX Conference on File and Storage Technologies 91

 0

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200

W
in

do
w

 S
iz

e

Time (s)

Host 1
Host 2
Host 3
Host 4

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  50  100  150  200

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4

 0

 200

 400

 600

 800

 1000

 20  40  60  80  100  120  140  160  180  200

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

Host 1
Host 2
Host 3
Host 4

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 3: Local L(t) Estimation. Separate VM disks cause window size divergence due to block placement and unfair array scheduling.

 0

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200

W
in

do
w

 S
iz

e

Time (s)

Host 1
Host 2
Host 3
Host 4

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  50  100  150  200

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4

 0

 200

 400

 600

 800

 1000

 20  40  60  80  100  120  140  160  180  200

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

Host 1
Host 2
Host 3
Host 4

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 4: Local L(t) Estimation. VMs use same shared disk, stabilizing window sizes and providing more uniform throughput and latency.

4.2 Latency Aggregation

After experimenting with completely decentralized ap-
proaches and encountering the divergence problem detailed
above, we implemented a more centralized technique to
compute cluster-wide latency as a consistent signal. The ag-
gregation doesn’t need to be very accurate, but it should be
reasonably consistent across hosts. There are many ways to
perform this aggregation, including approximations based
on statistical sampling. We discuss two different techniques
that we implemented for our prototype.

Network-Based Aggregation. Each host uses a UDP
socket to listen for statistics advertised by other hosts. The
statistics include the average latency and number of IOs per
LUN. Each host either broadcasts its data on a common sub-
net, or sends it to every other host individually. This is an
instance of the general average- and sum-aggregation prob-
lem for which multicast-based solutions also exist [29].

Filesystem-Based Aggregation. Since we are trying to
control access to a shared filesystem volume (LUN), it is
convenient to use the same medium to share the latency
statistics among the hosts. We implement a shared file per
volume, which can be accessed by multiple hosts simulta-
neously. Each host owns a single block in the file and peri-
odically writes its average latency and number of IOs for the
LUN into that block. Each host reads that file periodically
using a single large IO and locally computes the cluster-
wide average to use for window size estimation.

In our experiments, we have not observed extremely high
variance across per-host latency values, although this seems
possible if some workloads are served primarily from the
storage array’s cache. In any case, we do not anticipate that
this would affect PARDA stability or convergence.

5 Experimental Evaluation

In this section, we present the results from a detailed
evaluation of PARDA in a real system consisting of up to
eight hosts accessing a shared storage array. Each host is
a Dell Poweredge 2950 server with 2 Intel Xeon 3.0 GHz
dual-core processors, 8 GB of RAM and two Qlogic HBAs
connected to an EMC CLARiiON CX3-40 storage array
over a Fibre Channel SAN. The storage volume is hosted
on a 10-disk RAID-5 disk group on the array.

Each host runs the VMware ESX Server hypervisor [24]
with a local instance of the distributed flow control al-
gorithm. The aggregation of average latency uses the
filesystem-based implementation described in Section 4.2,
with a two-second update period. All PARDA experiments
used the smoothing parameters α = 0.002 and γ = 0.8.

Our evaluation consists of experiments that examine five
key questions: (1) How does average latency vary with
changes in workload? (2) How does average latency vary
with load at the array? (3) Can the PARDA algorithm adjust
issue queue lengths based on per-host latencies to provide
differentiated service? (4) How well can this mechanism



92 7th USENIX Conference on File and Storage Technologies USENIX Association

handle bursts and idle hosts? (5) Can we provide end-
to-end IO differentiation using distributed flow control to-
gether with a local scheduler at each host?

Our first two experiments determine whether average la-
tency can be used as a reliable indicator to detect overload
at the storage array, in the presence of widely-varying work-
loads. The third explores how effectively our control mod-
ule can adjust host queue lengths to provide coarse-grained
fairness. The remaining experiments examine how well
PARDA can deal with realistic scenarios that include work-
load fluctuations and idling, to provide end-to-end fairness
to VMs. Throughout this section, we will provide data using
a variety of parameter settings to illustrate the adaptability
and robustness of our algorithm.

5.1 Latency vs. Workload

4
32

64128
100806040200

0

5

10

15

20

25

30

35

40

Size 
(KB)

%Rand

I/O Size vs. Sequentiality

Latency (ms)

Figure 5: Latency as a function of IO size and sequentiality.

We first consider a single host running one VM execut-
ing different workloads, to examine the variation in average
latency measured at the host. A Windows Server 2003 VM
running Iometer [1] is used to generate each workload, con-
figured to keep 8 IOs pending at all times.

We varied three workload parameters: reads – 0 to 100%,
IO size – 4, 32, 64, and 128 KB, and sequentiality – 0
to 100%. For each combination, we measured throughput,
bandwidth, and the average, min and max latencies.

Over all settings, the minimum latency was observed for
the workload consisting of 100% sequential 4 KB reads,
while the maximum occurred for 100% random 128 KB
writes. Bandwidth varied from 8 MB/s to 177 MB/s. These
results show that bandwidth and latency can vary by more
than a factor of 20 due solely to workload variation.

Figure 5 plots the average latency (in ms) measured for a
VM while varying IO size and degree of sequentiality. Due
to space limitations, plots for other parameters have been
omitted; additional results and details are available in [11].

There are two main observations: (1) the absolute la-
tency value is not very high for any configuration, and (2)
latency usually increases with IO size, but the slope is small
because transfer time is usually dominated by seek and ro-

 0
 10
 20
 30
 40
 50
 60

 1  2  3  4  5

O
ve

ra
ll 

B/
W

 (M
B/

s)

Number of Hosts

 0
 10
 20
 30
 40
 50

 1  2  3  4  5Av
er

ag
e 

La
te

nc
y 

(m
s)

Number of Hosts
(a) Aggregate Bandwidth (MB/s) (b) Average Latency (ms)

Figure 6: Overall bandwidth and latency observed by multiple
hosts as the number of hosts is increased from 1 to 5.

Workload Phase1 Phase2
Size Read Random Q T L Q T L
16K 70% 60% 32 1160 26 16 640 24
16K 100% 100% 32 880 35 32 1190 27

8K 75% 0% 32 1280 25 16 890 17
8K 90% 100% 32 900 36 32 1240 26

Table 2: Throughput (T IOPS) and latencies (L ms) observed by
four hosts for different workloads and queue lengths (Q).

tational delays. This suggests that array overload can be
detected by using a fairly high latency threshold value.

5.2 Latency vs. Queue Length

Next we examine how IO latency varies with increases in
overall load (queue length) at the array. We experimented
with one to five hosts accessing the same array. Each host
generates a uniform workload of 16 KB IOs, 67% reads
and 70% random, keeping 32 IOs outstanding. Figure 6
shows the aggregate throughput and average latency ob-
served in the system, with increasing contention at the array.
Throughput peaks at three hosts, but overall latency contin-
ues to increase with load. Ideally, we would like to operate
at the lowest latency where bandwidth is high, in order to
fully utilize the array without excessive queuing delay.

For uniform workloads, we also expect a good correla-
tion between queue size and overall throughput. To verify
this, we configured seven hosts to access a 400 GB volume
on a 5-disk RAID-5 disk group. Each host runs one VM
with an 8 GB virtual disk. We report data for a workload
of 32 KB IOs with 67% reads, 70% random and 32 IOs
pending. Figure 7 presents results for two different static
host-level window size settings: (a) 32 for all hosts and (b)
16 for hosts 5, 6 and 7.

We observe that the VMs on the throttled hosts receive
approximately half the throughput (∼ 42 IOPS) compared
to other hosts (∼ 85 IOPS) and their latency (∼ 780 ms)
is doubled compared to others (∼ 360 ms). Their reduced
performance is a direct result of throttling, and the increased
latency arises from the fact that a VM’s IOs were queued at
its host. The device latency measured at the hosts (as op-
posed to in the VM, which would include time spent in host
queues) is similar for all hosts in both experiments. The



USENIX Association  7th USENIX Conference on File and Storage Technologies 93

VM 1
VM 2
VM 3
VM 4
VM 5
VM 6
VM 7

  0
  50

  100
  150
  200
  250
  300
  350
  400
  450
  500

Q = 32 Q = 16 for Hosts 5−7

IO
PS

VM 1
VM 2
VM 3
VM 4
VM 5
VM 6
VM 7

  0
  100
  200
  300
  400
  500
  600
  700
  800
  900

Q = 32               Q = 16 for Hosts 5−7

L
at

en
cy

 (
m

s)

(a) Average IOPS (b) Average latency (ms)
Figure 7: VM bandwidth and latency observed when queue length Q = 32 for all hosts, and when Q = 16 for some hosts.

overall latency decreases when one or more hosts are throt-
tled, since there is less load on the array. For example, in
the second experiment, the overall average latency changes
from ∼ 470 ms at each host to ∼ 375 ms at each host when
the window size is 16 for hosts 5, 6, and 7.

We also experimented with four hosts sending different
workloads to the array while we varied their queue lengths
in two phases. Table 2 reports the workload description and
corresponding throughput and latency values observed at
the hosts. In phase 1, each host has a queue length of 32
while in phase 2, we lowered the queue length for two of
the hosts to 16. This experiment demonstrates two impor-
tant properties. First, overall throughput reduces roughly in
proportion to queue length. Second, if a host is receiving
higher throughput at some queue length Q due to its work-
load being treated preferentially, then even for a smaller
queue length Q/2, the host still obtains preferential treat-
ment from the array. This is desirable because overall effi-
ciency is improved by giving higher throughput to request
streams that are less expensive for the array to process.

5.3 PARDA Control Method

In this section, we evaluate PARDA by examining fair-
ness, latency threshold effects, robustness with non-uniform
workloads, and adaptation to capacity changes.

5.3.1 Fairness

We experimented with identical workloads accessing 16 GB
virtual disks from four hosts with equal β values. This is
similar to the setup that led to divergent behavior in Fig-
ure 3. Using our filesystem-based aggregation, PARDA
converges as desired, even in the presence of different la-
tency values observed by hosts. Table 3 presents results for
this workload without any control, and with PARDA using
equal shares for each host; plots are omitted due to space
constraints. With PARDA, latencies drop, making the over-
all average close to the target L . The aggregate throughput
achieved by all hosts is similar with and without PARDA,
exhibiting good work-conserving behavior. This demon-
strates that the algorithm works correctly in the simple case
of equal shares and uniform workloads.

Uncontrolled PARDA L = 30 ms
Host IOPS Latency (ms) β IOPS Latency (ms)

1 780 41 1 730 34
2 900 34 1 890 29
3 890 35 1 930 29
4 790 40 1 800 33

Aggregate 3360 Avg = 37 3350 Avg = 31

Table 3: Fairness with 16 KB random reads from four hosts.

Next, we experimented with a share ratio of 1 : 1 : 2 : 2
for four hosts, setting L = 25 ms, shown in Figure 8.
PARDA converges on windows sizes for hosts 1 and 2 that
are roughly half those for hosts 3 and 4, demonstrating good
fairness. The algorithm also successfully converges laten-
cies to L . Finally, the per-host throughput levels achieved
while running this uniform workload also roughly match the
specified share ratio. The remaining differences are due to
some hosts obtaining better throughput from the array, even
with the same window size. This reflects the true IO costs
as seen by the array scheduler; since PARDA operates on
window sizes, it maintains high efficiency at the array.

5.3.2 Effect of Latency Threshold

Recall that L is the desired latency value at which the array
provides high throughput but small queuing delay. Since
PARDA tries to operate close to L , an administrator can
control the overall latencies in a cluster, bounding IO times
for latency-sensitive workloads such as OLTP. We investi-
gated the effect of the threshold setting by running PARDA
with different L values. Six hosts access the array concur-
rently, each running a VM with a 16 GB disk performing
16 KB random reads with 32 outstanding IOs.

Host IOPS Latency (ms) Host IOPS Latency (ms)
1 525 59 4 560 57
2 570 55 5 430 77
3 570 55 6 500 62

Table 4: Uncontrolled 16 KB random reads from six hosts.

We first examine the throughput and latency observed in
the uncontrolled case, presented in Table 4. In Figure 9,
we enable the control algorithm with L = 30 ms and equal
shares, stopping one VM each at times t = 145 s, t = 220 s



94 7th USENIX Conference on File and Storage Technologies USENIX Association

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200  250  300  350

W
in

do
w

 S
iz

e

Time (s)

Host 1
Host 2
Host 3
Host 4

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 50  100  150  200  250  300  350

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 50  100  150  200  250  300  350

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

Host 1
Host 2
Host 3
Host 4

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 8: PARDA Fairness. Four hosts each run a 16 KB random read workload with β values of 1 : 1 : 2 : 2. Window sizes allocated by
PARDA are in proportion to β values, and latency is close to the specified threshold L = 25 ms.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200  250  300  350  400

W
in

do
w

 S
iz

e

Time (s)

VM1 stops

VM2 stops

VM3 stops

Host 1
Host 2
Host 3
Host 4
Host 5
Host 6

 0

 10

 20

 30

 40

 50

 60

 50  100  150  200  250  300  350  400

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4
Host 5
Host 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 50  100  150  200  250  300  350  400

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

VM1 stops
VM2 stops

VM3 stops

Host 1
Host 2
Host 3
Host 4
Host 5
Host 6

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 9: PARDA Adaptation. Six hosts each run a 16 KB random read workload, with equal β values and L = 30 ms. VMs are stopped
at t = 145 s, t = 220 s and t = 310 s, and window sizes adapt to reflect available capacity.

and t = 310 s. Comparing the results we can see the effect
of the control algorithm on performance. Without PARDA,
the system achieves a throughput of 3130 IOPS at an aver-
age latency of 60 ms. With L = 30 ms, the system achieves
a throughput of 3150 IOPS, while operating close to the la-
tency threshold. Other experiments with different threshold
values, such as those shown in Figure 10 (L = 40 ms) and
Figure 12 (L = 25 ms), confirm that PARDA is effective at
maintaining latencies near L .

These results demonstrate that PARDA is able to con-
trol latencies by throttling IO from hosts. Note the different
window sizes at which hosts operate for different values of
L . Figure 9(a) also highlights the adaptation of window
sizes, as more capacity becomes available at the array when
VMs are turned off at various points in the experiment. The
ability to detect capacity changes through changes in la-
tency is an important dynamic property of the system.

5.3.3 Non-Uniform Workloads

To test PARDA and its robustness with mixed workloads,
we ran very different workload patterns at the same time
from our six hosts. Table 5 presents the uncontrolled case.

Next, we enable PARDA with L = 40 ms, and assign
shares in a 2 : 1 : 2 : 1 : 2 : 1 ratio for hosts 1 through 6 re-
spectively, plotted in Figure 10. Window sizes are differen-
tiated between hosts with different shares. Hosts with more

Host Size Read Random IOPS Latency (ms)
1 4K 100% 100% 610 51
2 8K 50% 0% 660 48
3 8K 100% 100% 630 50
4 8K 67% 60% 670 47
5 16K 100% 100% 490 65
6 16K 75% 70% 520 60

Table 5: Uncontrolled access by mixed workloads from six hosts.

shares reach a window size of 32 (the upper bound, wmax)
and remain there. Other hosts have window sizes close to
19. The average latency observed by the hosts remains close
to L , as shown in Figure 10(b). The throughput observed
by hosts follows roughly the same pattern as window sizes,
but is not always proportional because of array scheduling
and block placement issues. We saw similar adaptation in
window sizes and latency when we repeated this experiment
using L = 30 ms (plots omitted due to space constraints).

5.3.4 Capacity Changes

Storage capacity can change dramatically due to workload
changes or array accesses by uncontrolled hosts external
to PARDA. We have already demonstrated in Section 5.3.2
that our approach is able to absorb any spare capacity that
becomes available. To test the ability of the control algo-
rithm to handle decreases in capacity, we conducted an ex-
periment starting with the first five hosts from the previous



USENIX Association  7th USENIX Conference on File and Storage Technologies 95

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200  250

W
in

do
w

 S
iz

e

Time (s)

Host 1
Host 2
Host 3
Host 4
Host 5
Host 6

 0

 10

 20

 30

 40

 50

 60

 50  100  150  200  250

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4
Host 5
Host 6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 50  100  150  200  250

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

Host 1
Host 2
Host 3
Host 4
Host 5
Host 6

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 10: Non-Uniform Workloads. PARDA control with L = 40 ms. Six hosts run mixed workloads, with β values 2 : 1 : 2 : 1 : 2 : 1.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200  250  300  350

W
in

do
w

 S
iz

e

Time (s)

External load at t=230s
Host 1
Host 2
Host 3
Host 4
Host 5

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 50  100  150  200  250  300  350

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4
Host 5

 0

 500

 1000

 1500

 2000

 50  100  150  200  250  300  350

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

Host 1
Host 2
Host 3
Host 4
Host 5

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 11: Capacity Fluctuation. Uncontrolled external host added at t = 230 s. PARDA-controlled hosts converge to new window sizes.

experiment. At time t = 230 s, we introduce a sixth host that
is not under PARDA control. This uncontrolled host runs a
Windows Server 2003 VM issuing 16 KB random reads to
a 16 GB virtual disk located on the same LUN as the others.

With L = 30 ms and a share ratio of 2 : 2 : 1 : 1 : 1 for
the PARDA-managed hosts, Figure 11 plots the usual met-
rics over time. At t = 230 s, the uncontrolled external host
starts, thereby reducing available capacity for the five con-
trolled hosts. The results indicate that as capacity changes,
the hosts under control adjust their window sizes in propor-
tion to their shares, and observe latencies close to L .

5.4 End-to-End Control

We now present an end-to-end test where multiple VMs run
a mix of realistic workloads with different shares. We use
Filebench [20], a well-known IO modeling tool, to gener-
ate an OLTP workload similar to TPC-C. We employ four
VMs running Filebench, and two generating 16 KB random
reads. A pair of Filebench VMs are placed on each of two
hosts, whereas the micro-benchmark VMs occupy one host
each. This is exactly the same experiment discussed in Sec-
tion 2; data for the uncontrolled baseline case is presented
in Table 1. Recall that without PARDA, hosts 1 and 2 obtain
similar throughput even though the overall sum of their VM
shares is different. Table 6 provides setup details and reports
data using PARDA control. Results for the OLTP VMs are
presented as Filebench operations per second (Ops/s).

Host VM Type s1, s2 βh VM1 VM2 Th
1 2×OLTP 20, 10 6 1266 Ops/s 591 Ops/s 1857
2 2×OLTP 10, 10 4 681 Ops/s 673 Ops/s 1316
3 1×Micro 20 4 740 IOPS n/a 740
4 1×Micro 10 2 400 IOPS n/a 400

Table 6: PARDA end-to-end control for Filebench OLTP and
micro-benchmark VMs issuing 16 KB random reads. Configured
shares (si), host weights (βh), Ops/s for Filebench VMs and IOPS
(Th for hosts) are respected across hosts. L = 25 ms, wmax = 64.

We run PARDA (L = 25 ms) with host weights (βh) set
according to shares of their VMs (βh = 6 : 4 : 4 : 2 for hosts
1 to 4). The maximum window size wmax is 64 for all hosts.
The OLTP VMs on host 1 receive 1266 and 591 Ops/s,
matching their 2 : 1 share ratio. Similarly, OLTP VMs on
host 2 obtain 681 and 673 Ops/s, close to their 1 : 1 share
ratio. Note that the overall Ops/s for hosts 1 and 2 have a
3 : 2 ratio, which is not possible in an uncontrolled scenario.
Figure 12 plots the window size, latency and throughput ob-
served by the hosts. We note two key properties: (1) win-
dow sizes are in proportion to the overall β values and (2)
each VM receives throughput in proportion to its shares.
This shows that PARDA provides the strong property of
enforcing VM shares, independent of their placement on
hosts. The local SFQ scheduler divides host-level capacity
across VMs in a fair manner, and together with PARDA, is
able to provide effective end-to-end isolation among VMs.
We also modified one VM workload during the experiment



96 7th USENIX Conference on File and Storage Technologies USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 50  100  150  200  250  300  350

W
in

do
w

 S
iz

e

Time (s)

OLTP (host 1) stops

OLTP (host 1) starts

Host 1 (Beta = 6)
Host 2 (Beta = 4)
Host 3 (Beta = 4)
Host 4 (Beta = 2)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 50  100  150  200  250  300  350

La
te

nc
y 

(m
s)

Time (s)

Host 1
Host 2
Host 3
Host 4

 0

 500

 1000

 1500

 2000

 2500

 50  100  150  200  250  300  350

Th
ro

ug
hp

ut
 (I

O
PS

)

Time (s)

Host 1
Host 2
Host 3
Host 4

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 12: PARDA End-to-End Control. VM IOPS are proportional to shares. Host window sizes are proportional to overall β values.

 0

 1

 2

 3

 4

 5

 6

 7

 50  100  150  200  250  300  350

Be
ta

 V
al

ue
s

Time (s)

Host 1
Host 2
Host 3
Host 4

Figure 13: Handling Bursts. One OLTP workload on host 1 stops
at t = 140 s and restarts at t = 310 s. The β of host 1 is adjusted
and window sizes are recomputed using the new β value.

to test our burst-handling mechanism, which we discuss in
the next section.

5.5 Handling Bursts

Earlier we showed that PARDA maintains high utilization
of the array even when some hosts idle, by allowing other
hosts to increase their window sizes. However, if one or
more VMs become idle, the overall β of the host must be
adjusted, so that backlogged VMs on the same host don’t
obtain an unfair share of the current capacity. Our imple-
mentation employs the technique described in Section 3.4.

We experimented with dynamically idling one of the
OLTP VM workloads running on host 1 from the previous
experiment presented in Figure 12. The VM workload is
stopped at t = 140 s and resumed at t = 310 s. Figure 13
shows that the β value for host 1 adapts quickly to the
change in the VM workload. Figure 12(a) shows that the
window size begins to decrease according to the modified
lower value of β = 4 starting from t = 140 s. By t = 300 s,
window sizes have converged to a 1 : 2 ratio, in line with ag-
gregate host shares. As the OLTP workload becomes active
again, the dynamic increase in the β of host 1 causes its win-
dow size to grow. This demonstrates that PARDA ensures
fairness even in the presence of non-backlogged workloads,
a highly-desirable property for shared storage access.

Uncontrolled PARDA
HostVM Type OPM Avg Lat Th, Lh βh OPM Avg Lat

1 SQL1 8799 213 615, 20.4 1 6952 273
2 SQL2 8484 221 588, 20.5 4 12356 151

Table 7: Two SQL Server VMs with 1 : 4 share ratio, run-
ning with and without PARDA. Host weights (βh) and OPM (or-
ders/min), IOPS (Th for hosts) and latencies (Avg Lat for database
operations, Lh for hosts, in ms). L = 15 ms, wmax = 32.

5.6 Enterprise Workloads

To test PARDA with more realistic enterprise workloads,
we experimented with two Windows Server 2003 VMs,
each running a Microsoft SQL Server 2005 Enterprise Edi-
tion database. Each VM is configured with 4 virtual CPUs,
6.4 GB of RAM, a 10 GB system disk, a 250 GB database
disk, and a 50 GB log disk. The database virtual disks are
hosted on an 800 GB RAID-0 LUN with 6 disks; log vir-
tual disks are placed on a 100 GB RAID-0 LUN with 10
disks. We used the Dell DVD store (DS2) database test
suite, which implements a complete online e-commerce ap-
plication, to stress the SQL databases [7]. We configured a
15 ms latency threshold, and ran one VM per host, assign-
ing shares in a 1 : 4 ratio.

Table 7 reports the parameters and the overall applica-
tion performance for the two SQL Server VMs. Without
PARDA, both VMs have similar performance in terms of
both orders per minute (OPM) and average latency. When
running with PARDA, the VM with higher shares obtains
roughly twice the OPM throughput and half the average la-
tency. The ratio isn’t 1 : 4 because the workloads are not
always backlogged, and the VM with higher shares can’t
keep its window completely full.

Figure 14 plots the window size, latency and through-
put observed by the hosts. As the overall latency decreases,
PARDA is able to assign high window sizes to both hosts.
When latency increases, the window sizes converge to be
approximately proportional to the β values. Figure 15
shows the β values for the hosts while the workload is run-
ning, and highlights the fact that the SQL Server VM on
host 2 cannot always maintain enough pending IOs to fill



USENIX Association  7th USENIX Conference on File and Storage Technologies 97

 0

 5

 10

 15

 20

 25

 30

 35

 200  300  400  500  600

W
in

do
w

 S
iz

e

Time

Host 1 (Beta = 1)
Host 2 (Beta = 4)

 0

 5

 10

 15

 20

 25

 30

 200  300  400  500  600

La
te

nc
y 

(m
s)

Time

Host 1
Host 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 200  300  400  500  600

Th
ro

ug
hp

ut
 (I

O
PS

)

Time

Host 1
Host 2

(a) Window Size (b) Latency (ms) (c) Throughput (IOPS)

Figure 14: Enterprise Workload. Host window sizes and IOPS for SQL Server VMs are proportional to their overall β values whenever
the array resources are contended. Between t = 300 s and t = 380 s, hosts get larger window sizes since the array is not contended.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 200  300  400  500  600

Be
ta

 V
al

ue
s

Time (s)

Host 1
Host 2

Figure 15: Dynamic β Adjustment. β values for hosts running
SQL Server VMs fluctuate as pending IO counts change.

its window. This causes the other VM on host 1 to pick up
the slack and benefit from increased IO throughput.

6 Related Work

The research literature contains a large body of work re-
lated to providing quality of service in both networks and
storage systems, stretching over several decades. Numerous
algorithms for network QoS have been proposed, including
many variants of fair queuing [2, 8, 10]. However, these ap-
proaches are suitable only in centralized settings where a
single controller manages all requests for resources. Stoica
proposed QoS mechanisms based on a stateless core [23],
where only edge routers need to maintain per-flow state, but
some minimal support is still required from core routers.

In the absence of such mechanisms, TCP has been serv-
ing us quite well for both flow control and congestion avoid-
ance. Commonly-deployed TCP variants use per-flow in-
formation such as estimated round trip time and packet loss
at each host to adapt per-flow window sizes to network con-
ditions. Other proposed variants [9] require support from
routers to provide congestion signals, inhibiting adoption.

FAST-TCP [15] provides a purely latency-based ap-
proach to improving TCP’s throughput in high bandwidth-
delay product networks. In this paper we adapt some of

the techniques used by TCP and its variants to perform flow
control in distributed storage systems. In so doing, we have
addressed some of the challenges that make it non-trivial to
employ TCP-like solutions for managing storage IO.

Many storage QoS schemes have also been proposed to
provide differentiated service to workloads accessing a sin-
gle disk or storage array [4, 13, 14, 16, 25, 30]. Unfortu-
nately, these techniques are centralized, and generally re-
quire full control over all IO. Proportionate bandwidth allo-
cation algorithms have also been developed for distributed
storage systems [12, 26]. However, these mechanisms were
designed for brick-based storage, and require each storage
device to run an instance of the scheduling algorithm.

Deployments of virtualized systems typically have no
control over storage array firmware, and don’t use a central
IO proxy. Most commercial storage arrays offer only lim-
ited, proprietary quality-of-service controls, and are treated
as black boxes by the virtualization layer. Triage [18] is
one control-theoretic approach that has been proposed for
managing such systems. Triage periodically observes the
utilization of the system and throttles hosts using band-
width caps to achieve a specified share of available capacity.
This technique may underutilize array resources, and relies
on a central controller to gather statistics, compute an on-
line system model, and re-assign bandwidth caps to hosts.
Host-level changes must be communicated to the controller
to handle bursty workloads. In contrast, PARDA only re-
quires very light-weight aggregation and per-host measure-
ment and control to provide fairness with high utilization.

Friendly VMs [31] propose cooperative fair sharing
of CPU and memory in virtualized systems leveraging
feedback-control models. Without relying on a centralized
controller, each “friendly” VM adapts its own resource con-
sumption based on congestion signals, such as the relative
progress of its virtual time compared to elapsed real time,
using TCP-like AIMD adaptation. PARDA applies similar
ideas to distributed storage resource management.



98 7th USENIX Conference on File and Storage Technologies USENIX Association

7 Conclusions

In this paper, we studied the problem of providing
coarse-grained fairness to multiple hosts sharing a single
storage system in a distributed manner. We propose a novel
software system, PARDA, which uses average latency as an
indicator for array overload and adjusts per-host issue queue
lengths in a decentralized manner using flow control.

Our evaluation of PARDA in a hypervisor shows that it is
able to provide fair access to the array queue, control over-
all latency close to a threshold parameter and provide high
throughput in most cases. Moreover, combined with a local
scheduler, PARDA is able to provide end-to-end prioritiza-
tion of VM IOs, even in presence of variable workloads.

As future work, we are trying to integrate soft limits and
reservations to provide a complete IO management frame-
work. We would also like to investigate applications of
PARDA to other non-storage systems where resource man-
agement must be implemented in a distributed fashion.

Acknowledgements

Thanks to Tim Mann, Minwen Ji, Anne Holler, Neeraj
Goyal, Narasimha Raghunandana and our shepherd Jiri
Schindler for valuable discussions and feedback. Thanks
also to Chethan Kumar for help with experimental setup.

References

[1] Iometer. http://www.iometer.org.

[2] BENNETT, J. C. R., AND ZHANG, H. WF2Q: Worst-case fair
weighted fair queueing. In Proc. of IEEE INFOCOM ’96 (March
1996), pp. 120–128.

[3] BRUNO, J., BRUSTOLONI, J., GABBER, E., OZDEN, B., AND SIL-
BERSCHATZ, A. Disk scheduling with quality of service guarantees.
In Proc. of the IEEE Int’l Conf. on Multimedia Computing and Sys-
tems, Volume 2 (1999), IEEE Computer Society.

[4] CHAMBLISS, D. D., ALVAREZ, G. A., PANDEY, P., JADAV, D.,
XU, J., MENON, R., AND LEE, T. P. Performance virtualization for
large-scale storage systems. In Symposium on Reliable Distributed
Systems (October 2003), pp. 109–118.

[5] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND

PATTERSON, D. A. RAID: High-performance, reliable secondary
storage. ACM Computing Surveys 26, 2 (1994).

[6] CRUZ, R. L. Quality of service guarantees in virtual circuit switched
networks. IEEE Journal on Selected Areas in Communications 13, 6
(1995), 1048–1056.

[7] DELL, INC. DVD Store. http://delltechcenter.com/page/DVD+store.

[8] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and simula-
tion of a fair queuing algorithm. Journal of Internetworking Research
and Experience 1, 1 (September 1990), 3–26.

[9] FLOYD, S., AND JACOBSON, V. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking
1, 4 (1993), 397–413.

[10] GOYAL, P., VIN, H. M., AND CHENG, H. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switching
networks. IEEE/ACM Transactions on Networking 5, 5 (1997).

[11] GULATI, A., AND AHMAD, I. Towards distributed storage resource
management using flow control. In Proc. of First International Work-
shop on Storage and I/O Virtualization, Performance, Energy, Eval-
uation and Dependability (2008).

[12] GULATI, A., MERCHANT, A., AND VARMAN, P. dClock: Dis-
tributed QoS in heterogeneous resource environments. In Proc. of
ACM PODC (short paper) (August 2007).

[13] GULATI, A., MERCHANT, A., AND VARMAN, P. pClock: An ar-
rival curve based approach for QoS in shared storage systems. In
Proc. of ACM SIGMETRICS (June 2007), pp. 13–24.

[14] HUANG, L., PENG, G., AND CHIUEH, T. Multi-dimensional stor-
age virtualization. In Proc. of ACM SIGMETRICS (June 2004).

[15] JIN, C., WEI, D., AND LOW, S. FAST TCP: Motivation, Architec-
ture, Algorithms, Performance. Proceedings of IEEE INFOCOM ’04
(March 2004).

[16] JIN, W., CHASE, J. S., AND KAUR, J. Interposed proportional shar-
ing for a storage service utility. In ACM SIGMETRICS (June 2004).

[17] JUMP, J. R. Yacsim reference manual. http://www.owlnet.rice.edu/
∼elec428/yacsim/yacsim.man.ps.

[18] KARLSSON, M., KARAMANOLIS, C., AND ZHU, X. Triage: Per-
formance differentiation for storage systems using adaptive control.
ACM Transactions on Storage 1, 4 (2005), 457–480.

[19] LUMB, C., MERCHANT, A., AND ALVAREZ, G. Façade: Virtual
storage devices with performance guarantees. Proc. of File and Stor-
age Technologies (FAST) (March 2003).

[20] MCDOUGALL, R. Filebench: A prototype model
based workload for file systems, work in progress.
http://solarisinternals.com/si/tools/filebench/filebench nasconf.pdf.

[21] POVZNER, A., KALDEWEY, T., BRANDT, S., GOLDING, R.,
WONG, T. M., AND MALTZAHN, C. Efficient guaranteed disk re-
quest scheduling with Fahrrad. SIGOPS Oper. Syst. Rev. 42, 4 (2008),
13–25.

[22] SARIOWAN, H., CRUZ, R. L., AND POLYZOS, G. C. Scheduling
for quality of service guarantees via service curves. In Proceedings
of the International Conference on Computer Communications and
Networks (1995), pp. 512–520.

[23] STOICA, I., SHENKER, S., AND ZHANG, H. Core-stateless fair
queueing: A scalable architecture to approximate fair bandwidth al-
locations in high speed networks. IEEE/ACM Transactions on Net-
working 11, 1 (2003), 33–46.

[24] VMWARE, INC. Introduction to VMware Infrastructure. 2007. http:
//www.vmware.com/support/pubs/.

[25] WACHS, M., ABD-EL-MALEK, M., THERESKA, E., AND

GANGER, G. R. Argon: performance insulation for shared stor-
age servers. In Proc. of File and Storage Technologies (FAST) (Feb
2007).

[26] WANG, Y., AND MERCHANT, A. Proportional-share scheduling for
distributed storage systems. In Proc. of File and Storage Technolo-
gies (FAST) (Feb 2007).

[27] WONG, T. M., GOLDING, R. A., LIN, C., AND BECKER-SZENDY,
R. A. Zygaria: Storage performance as a managed resource. In Proc.
of Real-Time and Embedded Technology and Applications Sympo-
sium (April 2006), pp. 125–34.

[28] WU, J. C., AND BRANDT, S. A. The design and implementation
of Aqua: an adaptive quality of service aware object-based storage
device. In Proc. of MSST (May 2006), pp. 209–18.

[29] YALAGANDULA, P. A scalable distributed information management
system. In Proc. of SIGCOMM (2004), pp. 379–390.

[30] ZHANG, J., SIVASUBRAMANIAM, A., WANG, Q., RISKA, A., AND

RIEDEL, E. Storage performance virtualization via throughput and
latency control. In Proc. of MASCOTS (September 2005).

[31] ZHANG, Y., BESTAVROS, A., GUIRGUIS, M., MATTA, I., AND

WEST, R. Friendly virtual machines: leveraging a feedback-control
model for application adaptation. In Proc. of Intl. Conference on
Virtual Execution Environments (VEE) (June 2005).




