
Pesto: Online Storage Performance Management in
Virtualized Datacenters

Ajay Gulati
VMware Inc.

agulati@vmware.com

Ganesha
Shanmuganathan

VMware Inc.
sganesh@vmware.com

Irfan Ahmad
VMware Inc.

irfan@vmware.com

Carl Waldspurger
carl@waldspurger.org

Mustafa Uysal
VMware Inc.

muysal@vmware.com

ABSTRACT
Virtualized datacenters strive to reduce costs through work-
load consolidation. Workloads exhibit a diverse set of IO
behaviors and varying IO load that makes it difficult to es-
timate the IO performance on shared storage. As a result,
system administrators often resort to gross overprovisioning
or static partitioning of storage to meet application demands.
In this paper, we introduce Pesto, a unified storage perfor-
mance management system for heterogeneous virtualized dat-
acenters. Pesto is the first system that completely automates
storage performance management for virtualized datacenters,
providing IO load balancing with cost-benefit analysis, per-
device congestion management, and initial placement of new
workloads.

At its core, Pesto constructs and adapts approximate
black-box performance models of storage devices automati-
cally, leveraging our analysis linking device throughput and
latency to outstanding IOs.Experimental results for a wide
range of devices and configurations validate the accuracy
of these models. We implemented Pesto in a commercial
product and tested its performance on tens of devices, run-
ning hundreds of test cases over the past year. End-to-end
experiments demonstrate that Pesto is efficient, adapts to
changes quickly and can improve workload performance by
up to 19%, achieving our objective of lowering storage man-
agement costs through automation.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; C.4
[Performance of Systems]: Measurement techniques; C.4
[Performance of Systems]: Performance attributes; D.4.2
[Operating Systems]: Storage Management—Secondary
storage; D.4.8 [Operating Systems]: Performance—Mod-
eling and prediction; D.4.8 [Operating Systems]: Perfor-
mance—Measurements; D.4.8 [Operating Systems]: Per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

formance—Operational analysis; D.4.8 [Operating Systems]:
Performance—Queuing theory

General Terms
Algorithms, Design, Experimentation, Management, Mea-
surement, Performance

Keywords
Storage, Virtualization, VM, QoS, Device, Modeling

1. INTRODUCTION
Over the past decade, many IT organizations deployed

virtualized data centers in an effort to consolidate workloads,
streamline management, reduce costs, and increase utiliza-
tion. Despite success in these areas, overall costs for stor-
age management remain high. Over its lifetime, managing
storage is four times more expensive than its initial procure-
ment [23]. The annualized total cost of storage for virtualized
systems is often three times more than server hardware and
seven times more than networking-related assets [28].

Virtualization offers unprecedented dynamic control over
storage resources, allowing both VMs and their associated
virtual disks to be placed dynamically and migrated seam-
lessly around the physical infrastructure. While the basic
mechanisms for quickly migrating storage workloads exist
[20, 34], making higher-level decisions regarding the map-
ping of virtual disks to physical storage devices is much
harder. Virtualized environments can be extremely complex,
with a diverse set of mixed workloads sharing a collection
of heterogeneous storage devices. Such environments are
also dynamic, as new devices, hardware upgrades, and other
configuration changes are rolled out to expand capacity.

Simplistic approaches for dealing with performance prob-
lems, such as gross overprovisioning and strict partitioning of
resources between applications, are common in many phys-
ical deployments. Such techniques are even less appealing
for virtualized environments, where they are fundamentally
at odds with the goal of reducing costs through workload
consolidation and efficient device utilization. Storage admin-
istrators are still grappling with the consequences, making
most storage decisions in an ad-hoc manner. Administrators
typically rely on rules of thumb, or risky, time-consuming
trial-and-error placements to perform workload admission,
resource balancing, and congestion management.

The fundamental challenge in effective storage performance
management is estimating IO performance accurately and
robustly in a dynamic environment. Estimates must be up-
dated to adapt to changing workload mixes, varying device
conditions and configurations, and active storage compo-
nents that attempt to optimize their own local performance.
Relying on static parameters, extensive offline measurements,
or frequent user intervention is impractical. Even if parame-
ters could be tuned correctly at a given point in time, most
environments are too complex to ensure that they would
remain reasonable. Moreover, mistakes are costly, affecting
many applications due to high consolidation ratios.

Existing approaches for storage provisioning and modeling,
such as Hippodrome [5], Minerva [3], IRONModel [30], and
relative-fitness models [24], mostly rely on offline measure-
ments and are not designed to work in a completely online
manner. Analytical approaches [22, 27, 32] rely on detailed
device information which is not available in most real en-
vironments, and on configurations which may change over
time. BASIL [13] supports online device modeling and IO
load balancing, but it lacks cost-benefit analysis leading to
poor decisions. We also found its passive online modeling
impractical, frequently resulting in long convergence times.
PARDA [11] manages congestion on a single device, but re-
quires a key latency-threshold parameter to be set manually.

Toward automated storage management, we introduce
Pesto, the first practical, automated system designed to man-
age storage performance in dynamic, heterogeneous virtual-
ized environments. Pesto consists of three key components:
1) a continuously-updated storage performance model to esti-
mate performance; 2) a decision engine that uses this model
to place and migrate storage workloads as conditions change;
and 3) a congestion management system that automatically
detects overload conditions and reacts by throttling storage
workloads. Our key contributions include:

• A simple yet useful analytical relationship between peak
throughput and the slope of latency vs. outstanding IOs.

• The design and implementation of an online workload
injector that creates device models in tens of seconds.

• Leveraging these device models to perform robust IO load
balancing with cost-benefit analysis, initial placement
of new virtual disks, capacity planning and threshold
determination for congestion management.

• A fully-automated system that integrates these compo-
nents to manage storage devices in a virtual datacenter.

We have implemented Pesto as part of a commercial prod-
uct, within the Storage DRS component of VMware’s vSphere
management software [36]. We report results from end-to-
end experiments demonstrating that Pesto computes effec-
tive device models and supports powerful automated storage
management capabilities for virtual datacenters, including
storage load balancing, congestion management, and capac-
ity planning. Pesto-recommended placement improved over-
all throughput by more than 10% and reduced peak-load
latency by up to 19%.

The next section discusses existing approaches for storage
modeling and automated management. Section 3 provides a
high-level overview of the Pesto system. Section 4 presents
our new analytical results, and shows how they can be lever-
aged to construct practical performance models. The design
and implementation of Pesto is described in Section 5, in-
cluding online model creation and its applications to IO load

balancing, congestion management, and capacity planning.
Section 6 evaluates Pesto using end-to-end experiments in a
datacenter environment. Finally, we summarize our conclu-
sions and highlight directions for future research in Section 7.

2. BACKGROUND
The complexity of storage devices and workloads is re-

flected in the evolution of modeling techniques, which can
be classified into two broad categories: analytical models and
sampling-based performance models. Our technique falls in
the empirical, sampling-based modeling category, with the
key distinction that models are obtained in a lightweight
online manner.

2.1 Analytical Models
Analytical models try to predict the performance of stor-

age arrays using low-level details about their disk drives,
cache sizes, and caching policies, along with workload charac-
terizations. Analytical models are often much less expensive
and faster to build than empirical models. However, they suf-
fer from two key drawbacks: using simplifying assumptions
about the underlying storage device and requiring detailed
knowledge of storage array internals for better modeling [33].

The capabilities of analytical models have advanced along
with storage technologies. For a single disk drive, Gotlieb
and MacEwen [10], Ruemmler and Wilkes [26] and others
have proposed detailed seek-distance and drive-performance
models. Tools like DIXTrac [9] allow users to extract detailed
disk characteristics by running specific workloads. Kim and
Tantawi [17] extended models to consider multiple disks.
Lee and Katz [18], and Chen and Towsley [6, 7] incorporated
queuing, IO segmentation, and RAID architectures.

Later research [21, 40, 31] extended models to include vari-
ous operating modes, such as normal, degraded, recovery and
rebuild while others [8, 27, 32, 33] addressed complexities
such as caches, read-ahead and prefetching policies. Some
approaches try to understand internal caching and prefetch-
ing policies based on empirical measurements. This is mainly
done by using offline access to the array, measuring latency
and throughput while running specific workloads. For exam-
ple, random and sequential reads can be used to understand
prefetching policies in an array [33].

Our goal is to monitor the array from the outside and
predict performance metrics (e.g., expected average latency,
peak device IOPS, proximity to peak performance) by utiliz-
ing a black-box approach. As such, we prefer simpler mod-
els that provide sufficiently high accuracy for automating
storage management tasks such as load balancing, workload
placement, and admission control.

2.2 Sampling-Based Models
Sampling-based methods build storage models by moni-

toring a device passively, or by performing measurements
actively using micro-benchmarks. Such techniques have be-
come quite popular in recent years, as they do not require
understanding increasingly-complex disk array internals.

Based on measurements from actual storage devices, re-
searchers have proposed statistical models [16], table-based
models [4], CART [39] and other machine-learning models,
and relative-fitness models [24]. Relative-fitness research
found that workload performance changes based on the un-
derlying device, making it harder to model closed workloads.

Thereska and Ganger [30] have proposed robust models

ESX Hosts

running VMs

Datastores

containing

virtual disks

vSphere

Stats collection

Pesto Engine

PARDA

Figure 1: Pesto system architecture.

that can better deal with changes in a storage system over
time, as well as modeling bugs. However, their model re-
quires access to the storage system source code, which is not
generally available. Other approaches for “what-if” analy-
sis [29] involve very simplistic queuing theory and tend to
work only on single-disk systems.

In our previous work, we proposed BASIL, a solution to
IO load balancing in virtual environments [13]. BASIL used
the linear relationship between IO latency and outstanding
IOs as a relative model. However, we encountered several
challenges while trying to use BASIL in real production
environments. First, a BASIL model is based on passive
observations of actual workload IOs, causing different models
to be produced for the same device over time. Second, a
robust model requires covering a wide range of outstanding
IOs, which may not be observed in production deployments,
even over long time periods. Finally, BASIL didn’t perform
any cost-benefit analysis, leading to workload configurations
with lower throughput or higher latency.

3. PESTO SYSTEM OVERVIEW
In this section, we describe our system model and provide

an overview of Pesto. Figure 1 depicts the Pesto system
architecture. Each ESX host [35] runs multiple virtual ma-
chines (VMs) containing user workloads. A VM has one or
more virtual disks, which are encapsulated by files. Each
virtual disk file is placed on a datastore, corresponding to a
LUN or a filesystem on a shared storage device. Datastores
are accessed by all the ESX hosts using NFS or the VMFS
clustered file system [37].

Pesto runs in a separate vSphere management server [36]
and is responsible for deciding where to place each virtual
disk. Pesto makes its decisions based on an online perfor-
mance model for each datastore. It uses a workload injector
that runs in one of the ESX hosts to automatically generate
performance models while the system is deployed. These
models are updated periodically to reflect any changes in
operating conditions.

In order to find a good placement of virtual disks that bal-
ances IO load across the available datastores, Pesto collects
detailed statistics on the way the virtual disks are accessed at
each of the ESX hosts. The management server periodically
collects these IO statistics and computes online histograms
for various datastore and virtual disk statistics using the
P 2 algorithm [15] . The Pesto decision engine uses these

statistics and the performance models to recommend actions
to balance IO load or to place new virtual disks. The rec-
ommendations produced by Pesto are executed on the ESX
hosts by moving the virtual disks across datastores automat-
ically, or by creating new virtual disks on the datastores
selected by Pesto.

Each ESX host also runs PARDA [11], which performs con-
gestion management on the individual datastores. Pesto uses
its performance models to determine the operating parame-
ters of PARDA automatically, such as the latency threshold
used to identify congestion on a datastore. As more virtual
disks are allocated and IO loads change over time, Pesto
determines whether the IO loads are approaching the peak
throughput capacity of the storage devices, and helps admin-
istrators plan capacity expansion for the storage system.

4. LQ-SLOPE PERFORMANCE MODEL
The performance of a storage device depends on many

factors, such as the number of outstanding IOs (OIOs), IO
size, read-write ratio, cache hit rate, seek distance among
requests and other storage controller optimizations [3, 5, 13,
33]. However, the overall latency for an IO request is the
sum of both its service time and its queuing delay. As the
number of OIOs increases, queuing delay becomes the main
component of overall latency – not the service time for a
single IO request [16].

Our model is based on combining an empirical observa-
tion – that latency (L) varies linearly with the number of
outstanding IOs (Q), as shown by several recent studies [11,
13, 16] – with the well-known Little’s Law [19]. We refer to
the slope of this linear relationship as the LQ-slope.

In this section, we first discuss the goals for our model in
the context of virtualized environments. We then present our
simple analytical result based on the relationship between
average latency and the number of OIOs at the storage de-
vice. While this result may seem intuitive for simple queuing
systems, it is not obvious for storage devices whose perfor-
mance tends to depend on IO load.Finally, we explain the
impact and handling of other workload parameters.

4.1 Modeling for Virtualized Datacenters
Pesto is designed for production use in enterprise environ-

ments. In typical deployments, virtualized datacenters are
configured to reduce costs by improving efficiency. Multiple
workloads are consolidated onto shared devices, driving up
both average and peak device utilization. The properties
and constraints of such environments are reflected in our
design assumptions:

High Device Utilization: As a consequence of workload
consolidation, our primary focus is on the behavior of devices
during periods of relatively high OIOs, when queuing delay
dominates latency. Unlike previous techniques, we do not
try to model service times or IOPS for light workloads.

Typical Workloads: Our goal is to obtain device models
in terms of peak IOPS and average latency for worst-case
workloads during periods of high load. We do not aim to
compute precise latencies for given workload configurations.
As a result, random IO can effectively approximate aggre-
gated enterprise workloads, despite ignoring the complexities
of storage controller optimizations. BASIL [13] found that
changes in IO size must be fairly large to affect latency sub-
stantially, and that the impact of randomness and read-write
ratio is even less significant for typical enterprise workloads.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5 10 15 20 25 30 35 40 45

La
te

nc
y

(m
s)

Outstanding IOs

L=2.84*Q + 9.95
R2=0.998

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100 120

La
te

nc
y

(m
s)

Outstanding IOs

L=0.98*Q + 7.70
R2=0.997

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100 120

La
te

nc
y

(m
s)

Outstanding IOs

L=1.32*Q + 3.81
R2=0.998

(a) Single SCSI disk (b) RAID-5 LUN, 7 FC disks (c) RAID-6 LUN, 7 SATA disks

Figure 2: LQ-plots of latency vs. outstanding IOs show linear relationships for three different LUNs.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40 45

T
hr

ou
gh

pu
t (

IO
P

S
)

Outstanding IOs

Actual
Predicted

Predicted Peak

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120
T

hr
ou

gh
pu

t (
IO

P
S

)

Outstanding IOs

Actual
Predicted

Predicted Peak
 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

IO
P

S
)

Outstanding IOs

Actual
Predicted

Predicted Peak

(a) Single SCSI disk (b) RAID-5 LUN, 7 FC disks (c) RAID-6 LUN, 7 SATA disks

Figure 3: Plots of throughput (in IOPS) vs. outstanding IOs show non-linear relationships for three different
LUNs. As the number of OIOs increases, the increase in throughput slows and ultimately saturates.

Although a few well-known applications, such as backups and
database logging, do exhibit more extreme behavior, they
are also less likely to suffer from performance bottlenecks.

Concurrency Largely Device-Independent: In many
applications, the number of OIOs is an inherent property of
the workload, with little device dependence [12, 13]. One
study measured workload changes across devices, and found
the overall change in OIOs to be within 10-15% [24]. Typ-
ical applications are designed to use a certain number of
threads to issue IOs, and this number doesn’t increase arbi-
trarily for a slower device. However, in the case of a faster
device, the number of OIOs may be lower due to quicker
completions. To reduce any error due to overestimation of
concurrency, models can be adjusted incrementally based on
actual behavior.

No Disruptions: Online modeling must not adversely
impact production workloads. As a result, we prefer approx-
imate models that can be obtained online, instead of more
nuanced models that require offline or intrusive calibration.
Nevertheless, our modeling must handle dynamic, shared
and consolidated storage systems robustly.

4.2 Latency vs. OIO: Linear Relationship
Linearity between IO latency and outstanding IOs (OIO)

is not very intuitive, given that the performance of storage
devices is load-dependent and especially since caches and
other optimizations can play a critical role in overall latency.
Later, in this section, we explore this relationship in more
detail and present a simple model to explain this behavior.
For now, we demonstrate empirically that the relationship is
linear and thus can be represented using Equation 1, where
L and Q denote latency and OIOs, m is the slope of the
linear fit line and C its intercept:

L = m×Q+ C (1)

We validate this empirically using micro-benchmark exper-
iments for three different storage devices with diverse disk
types and reliability levels: a single SCSI disk, a RAID-5

LUN on a NetApp array consisting of 7 FC disks and a
RAID-6 LUN consisting of 7 SATA disks on the same array.
In all cases, we ran a closed-loop workload with 16 KB ran-
dom reads. Figure 2 plots average IO latency as the number
of OIOs is varied for the storage devices.

First, notice that latency increases almost linearly with
Q. It is not obvious that latency should vary linearly, espe-
cially since device performance improves with OIOs due to
improved IO scheduling. A second observation is that IOPS
varies in a non-linear manner with Q and reaches saturation
after a certain point; this is well-known behavior [11, 13].
Figure 3 plots the throughput for the same three devices
and the same workload as Q is increased. The data shows a
clear asymptotic throughput saturation point.

Assuming that the arrival rate is equal to the completion
rate, and applying Little’s Law [19], we know that:

Q = L× T (2)

Here T is the throughput (in IOPS) and L is again the aver-
age latency of IO requests (in seconds). Using Equations 1
and 2, throughput can be obtained directly as a function of
OIOs by substituting for L:

T = Q/(m×Q+ C) (3)

Equation 3 models the non-linear relationship between the
total number of outstanding IOs, Q, and throughput, T .
Figure 3 shows that the predicted throughput matches the
empirical observations closely. Using Equation 3, we can es-
timate the peak value of throughput, Tpeak, as Q is increased
to a large value:

Tpeak = lim
Q→∞

Q

m×Q+ C
≈ 1/m (4)

Equation 4 shows that peak throughput is simply a func-
tion of LQ-slope. Devices with lower slope have higher peak
throughput, such that the peak value matches the inverse of
the slope. Intuitively, this seems reasonable: more powerful
devices will have relatively smaller increases in average la-

tency in response to increasing load, as well as higher peak
throughput.

The key result is that the LQ-slope of a workload can
predict the device throughput of that workload closely. This
relationship is well-known for a simple queuing server with a
fixed service time per request. Nevertheless, it is surprising
that such a simple result holds for complex storage systems.
By using both the LQ-slope and the intercept C, Equation 3
can be used to predict throughput as the number of OIOs
is varied.This is extremely useful, since these parameters
can be obtained easily in a live system, either by running a
short-lived workload injector (discussed in Section 5.1), or
by collecting data pairing the number of OIOs with observed
latency using passive online measurements.

Alternatively, peak IOPS could be obtained by running a
high-OIO workload and observing throughput directly, but
this would have several drawbacks. First, the workload must
saturate the device, negatively impacting other workloads
competing for array-level resources. Second, we can estimate
the entire IOPS vs. OIOs curve, and use that information for
various purposes, as detailed in later sections. Finally, LQ-
slope can be computed for a workload in an online manner,
even though the workload may never generate enough load
to saturate the device.

4.3 Why is Latency vs. OIO Linear?
Earlier we presented the linear relationship between la-

tency and outstanding IOs as an empirical observation. We
now revisit this issue and present a model to explain how this
behavior is possible, despite the load-dependence property
of storage devices.

From a queuing-theory perspective, the performance of
storage devices varies with the number of IOs queued at
them. For sufficiently large queue depths, service times do
not decrease as more load is added, due to diminishing re-
turns from IO scheduling. Thus, latency is dominated by
queuing delay, making it linear in terms of queue depth.

This is consistent with a well-known result: average seek
distance decreases with increasing OIO. For a single random
IO, the average seek distance is one-third of the maximum
seek distance [14]. As the number of OIOs increases, average
seek distance decreases according to Equation 5 [10, 25]:

AvgSeekDistance =
MaxSeekDistance

Q+ 2
(5)

Although average seek time decreases with increasing queue
depth, there are diminishing returns. The overall service
time can be expressed as a fixed latency Lfixed and a vari-
able seek-time latency based on queue depth (Q):

Lservice = Lfixed +
MaxSeekT ime

Q+ 2
(6)

For Q IOs (including the one in service), the total latency
for the current request is Q× Lservice:

Ltotal = Q× (Lfixed +
MaxSeekT ime

Q+ 2
) (7)

Thus, for disks, the overall response time approaches a linear
function as Q increases, assuming worst-case service time
with random IO requests.

We have verified this empirically for many different stor-
age devices using closed-loop workloads while varying the
number of OIOs. Figure 4 graphs LQ-plots for a wide variety
of logical devices exposed out of storage arrays from different

6-disk FC RAID5 (EMC)

7-disk FC RAID6 (NetApp)

48-disk FC RAID6 (NetApp)

8-disk SSD (EMC)

Single Disk Local SCSI

6-disk FC RAID5 (EMC)

7-disk SATA RAID6 (NetApp)

Figure 4: LQ-plots for several different devices.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

La
te

nc
y

(m
s)

Outstanding IOs

L=0.09*Q + 5.37

R2=0.996

Figure 5: LQ-plot for 48-disk LUN on NetApp FAS.

vendors. These include LUNs backed by varying numbers of
Fibre Channel, SATA, and solid-state disks (SSD). In each
case, the LQ-plot is linear, with the LQ-slope varying based
on device performance. For the SSD device, we continued
out to 100 OIOs to show that linearity continues to hold.

As the number of disks backing a datastore increases, one
might reasonably expect more complex behavior that could
not be captured by a single LQ-slope. For instance, random
IOs may result in a skewed distribution of OIOs across disks.
To validate our result for such cases, we ran an experiment
using a 48-disk RAID-6 LUN on a NetApp FAS disk array.
Figure 5 shows the slope for this LUN as Q was increased.
We do not observe any specific abnormal behavior. Of course,
the LQ-slope itself is much smaller due to higher parallelism.

4.4 Dependence on IO Workload
So far we have shown that for a given fixed workload, our

model can predict throughput based on load with good accu-
racy. We now examine how LQ-slope, latency and through-
put vary with respect to other workload parameters, such as
IO size, read fraction, and request locality.

We ran a series of more than 700 micro-benchmarks, vary-
ing just one of these parameters along with OIOs while keep-
ing others constant. We collected data for variable IO sizes
from 4 KB to 256 KB, read percentage from 0 to 100%, and
randomness from 0 to 100%. These benchmarks were run on
4 different LUNs: three with 3, 6 and 9 FC disks respectively
and another with SSD disks.

Figure 6 shows how LQ-slope varies for different values

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 20 40 60 80 100

LQ
-S

lo
pe

Random%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 20 40 60 80 100 120 140

LQ
-S

lo
pe

IO Size (Kb)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 20 40 60 80 100

LQ
-S

lo
pe

Read%
(a) LQ-slope vs. Random% (b) LQ-slope vs. IO Size (c) LQ-slope vs. Read%

Figure 6: LQ-Slope as a function of IO workload parameters, for a 9-disk FC LUN.

of these parameters for the 9-disk FC LUN; other LUNs
displayed similar variations. For IO size, the slope varies
from 0.09 to 0.52 as the size increases from 4 to 256 KB.
The slope varied from 0.18 to 0.14 as the percentage of reads
varied from 0 to 100%. Similarly, the slope varied from 0.08
to 0.14 randomness increased from 0 to 100%.

These results reveal a high variance in LQ-slope based
on the actual workload, especially for extreme cases such
as sequential workloads, workloads with large IO size, and
workloads with a high percentage of writes. The data points
corresponding to completely-sequential workloads exhibited
a big decrease in slope due to prefetching. The time to
service larger IOs increased with IO size, which caused the
slope to increase. In LUNs with write-back caching, higher
read fractions caused the LQ-slope to be higher, as caches
are able to absorb writes.

As a result, one shouldn’t use the slope of one workload to
predict the performance of others when any of them exhibits
extreme behavior. Except for extreme cases where the work-
loads have very large IO sizes, are completely sequential, or
have a large percentage of writes, the variation in LQ-slope
was limited to 15%. While a few well-known applications
exhibit such extreme behavior, the workload observed by
a datastore is typically random due to high degree of con-
solidation. Even if datastores are read sequentially during
backups, virus scanning or other operations, their provision-
ing will typically be based on more common non-sequential
access patterns.

We also measured the error in predicted throughput for
the micro-benchmarks. Comparing the actual throughput
at 64 OIOs, the error was less than 5% for all four LUNs,
for all experiments except the extreme cases of sequential
and write-intensive workloads discussed above. For the SSD
LUN, the error was less than 5% in all cases. The highest
error for the 9-disk LUN was for 128 KB sequential writes,
at approximately 7%. The errors for the 3- and 6-disk LUNs
were largest for sequential write workloads, near 30%.

For each of these cases, the relationship between the in-
verse of LQ-slope and peak throughput seems to hold. This
shows that when workload characteristics are well known
and not very variable, performance estimates can be based
on the slope of the micro-benchmark closest to the real work-
load. For example, if large IO sizes are common in a certain
environment, one can construct more accurate device models
by using those IO sizes in the workload injector (discussed
in Section 5.1)

In practice, most application workloads vary over time.
For a more complex IO workload, we can either evaluate the
slope based on its actual request mix, or by using a princi-
pal component of the workload. In most applications, we
observe that these parameters don’t change frequently, and

Workload Size %Read %Random

WebServer1 4 KB 95 75

WebServer2 8 KB 95 75

DB Server 1 MB 100 100

DB Log 64 KB 0 0

Exchange 4 KB 67 100

Streaming 64 KB 98 0

Table 1: Iometer settings for simulated workloads.

that they are rarely associated with the extreme ranges. Ex-
treme cases of completely-sequential or write-only workloads,
such as log LUNs, are not difficult to identify. In the next
section, we examine cases where there are multiple principal
components, either within a single application, or due to
multiple applications running on the same shared storage.

4.5 Aggregation of IO Workloads
Sharing storage LUNs across multiple applications has be-

come commonplace. For example, deployments of virtualized
datacenters and cloud infrastructures require shared storage
to facilitate VM migration and management. As a result,
there are typically multiple IO streams accessing a single de-
vice. We now consider the relationship between throughput,
latency and LQ-slope for a mixture of workloads.

We experimented with four VMs, each running a different
workload selected from Table 1. The VMs were hosted on a
Dell PowerEdge 2950 server running VMware ESX 4.1 [35].
These workloads represent Iometer [2] configurations that
have been proposed to closely mimic some well-known real
workloads [38]. We scaled the OIOs from the VMs linearly
to measure the impact on latency and throughput.

Figure 7 plots the average IO latency for three different
workload mixes. Note that latency still increases linearly
with outstanding IOs. Figure 8 shows the corresponding
throughput obtained as a function of OIOs. Notice again
that throughput increases initially, but saturates after a cer-
tain load. For each workload mix, we also plot the predicted
throughput curve based on our model, which tracks the ac-
tual observed throughput closely.

The predicted throughput was compared with the average
throughput observed at each OIO. Even when the IO sizes
were large and some VMs issued large numbers of writes,
while other VMs issued sequential reads, the error in pre-
dicted throughput was within 10% of the average value after
the throughput saturated, as shown in Figure 8(c).

These results indicate that the LQ-slope is representa-
tive of overall throughput, even if the actual workload is a
mixture of multiple IO streams. We scaled the workloads
uniformly but, in practice, the proportion of workloads may

 0
 10
 20
 30
 40
 50
 60
 70

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(m
s)

Outstanding IOs

L=0.27*Q + 1.31
R2=0.961

 0
 10
 20
 30
 40
 50
 60
 70

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(m
s)

Outstanding IOs

L=0.27*Q + 4.23
R2=0.991

 0
 10
 20
 30
 40
 50
 60
 70

 0 20 40 60 80 100 120 140 160 180

La
te

nc
y

(m
s)

Outstanding IOs

L=0.30*Q + 0.83
R2=0.960

(a) DB + DB Log + Exchange + Streaming (b) 2 WebServers + DB + Exchange (c) Diff IO sizes, Large writes

Figure 7: Latency vs. OIO for three different workload mixes.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

IO
P

S
)

Outstanding IOs

Actual
Predicted

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

IO
P

S
)

Outstanding IOs

Actual
Predicted

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

IO
P

S
)

Outstanding IOs

Actual
Predicted

(a) DB + DB Log + Exchange + Streaming (b) 2 WebServers + DB + Exchange (c) Diff IO sizes, Large writes

Figure 8: Throughput (in IOPS) vs. OIO relationship for three different workload mixes.

vary at different load levels. In such cases, we can use the
configuration and slope for a higher range of OIOs.

We have experimented mostly with changes in workload
characteristics, but not in array controller settings. One
could also evaluate this relationship across different subsets
of controller-level optimizations. However, by studying sev-
eral diverse arrays from different vendors, we believe that
we have covered a reasonably broad range of controller-level
optimizations and settings.

5. DESIGN AND IMPLEMENTATION
The key to automating storage performance management

is obtaining robust and accurate device models in an on-
line manner. In this section, we first describe Pesto’s online
model creation component and its various challenges. We
then explain how to use these models for various tasks, such
as congestion management, IO load balancing, handling ad-
dition and removal of datastores and capacity planning.

5.1 Online Model Creation
Like Pesto, BASIL [13] also employed online models. How-

ever, we encountered several problems while trying to use
BASIL in real production environments. First, a BASIL
model is based on passive observations of actual workload
IOs, causing different models to be produced for the same
device over time. Second, a robust model requires covering
a wide range of outstanding IOs, which may not be observed
in production deployments, even over long time periods.

These shortcomings of BASIL are illustrated in Figure 9,
which is composed of wildly-divergent LQ-slope models for
the same datastore, depending upon which workloads were
placed there while the model was being computed. Similarly,
when faced with a new device, BASIL was forced to move
some workloads to it before being able to form any model
at all. In Pesto, we have attempted to remedy these inaccu-
racies and long modeling delays by taking a very different
approach.

We developed a workload injector that runs for short du-
rations during idle periods to generate performance models
periodically. The workload injector generates an LQ-slope
model that combines empirical observations of request la-
tency (L) and the number of outstanding IOs (Q). To pro-
duce such a model, the injector must gather enough data
points to correlate the size of the request queue to the ob-
served latency under a variety of conditions. It needs to
identify idle periods, and should detect if its measurements
are being disrupted by any ongoing workloads. The mod-
els generated by the injector should be applicable to a wide
variety of storage devices deployed in the datacenter.

To generate an LQ-slope model, the injector issues random
read IOs (of configurable size; by default, 4 KB) over a
large fraction of the datastore address space. We collect
measurements ranging from 2 to 32 OIOs. For each OIO
value, the injector issues IOs for a short period of time and
collects the latency measurement for each IO, along with
the total injected IO count. Once these measurements are
complete, we use a standard least-squares based linear fit to
compute the slope in the model. If the R2 value is smaller
than 0.93, we discard the values, assuming that the error
may be due to interference or background activity at the
storage array.

For block-based storage devices, the injector simply opens
the raw device and issues random reads over the full or partial
block range of the device. For NFS-based data storage, it
isn’t possible to open a raw device. Instead, the injector
traverses the directory tree, selecting the largest files until it
reaches a predetermined file count or total space threshold.
It performs a random IO by generating a random offset into
the total space consumed by these files, yielding an offset
within a particular file to read. Alternatively, one could
create a large file, issue random IOs, and delete the file.

By using random read IOs, we aim to measure the physical
access characteristics directly. Random reads across the
entire block address range ensure that we are not biased by
read cache hits. Similarly, reads bypass any write buffers in

Figure 9: BASIL-generated LQ-slopes for the same
NetApp 7-disk RAID-6 datastore, under different
workloads. Pesto instead performs active modeling.

the storage device. We are exploring separate write models
for storage devices and the impact of write caching as future
work.

5.1.1 Idleness Detection
In virtual environments, multiple hosts often access the

same storage device using either NFS or a clustered file
system such as VMFS [37]. In both cases, a single host can
determine idleness only for the VMs it is running locally. In
order to detect device idleness globally, we collect statistics
at the datastore level by aggregating them from all hosts
periodically (by default, every four seconds).

Using a shared file on the datastore, each host is assigned
a single 512-byte block to deposit its statistics. Since block
writes are considered atomic, any host can read the file asyn-
chronously, and compute the overall IO count and latency re-
cently observed by other hosts, thereby computing datastore-
wide values. To avoid conflicts, we execute the injector only
from a single host by electing a leader using the shared file
in the datastore: the host assigned to the first block in the
shared file is the leader and tasked with the model genera-
tion for the datastore. Liveness is detected using a heartbeat
mechanism: if a host dies or becomes disconnected, a new
block assignment is generated and a new leader is elected.

To detect idleness, the injector monitors the overall statis-
tics for recent periods. A datastore is deemed idle if its over-
all IO count and outstanding IOs remain below a specified
threshold during two consecutive periods. Since thresholds
of zero are unrealistic in practice, we used thresholds of 30
for IO count and 0.6 for OIOs in this paper. These num-
bers were determined based on experimentation, although
the approach is not very sensitive to them.

Even after declaring a device idle, it is possible that an IO
workload on some host becomes active while the injector is
running. The injector continuously applies Little’s Law to
compute an OIO value using actual IO count and latency
measurements. If the measurement differs from the injected
value, it is an indication that some other workload must have
become active. If there is significant interference (currently
defined as more than a 30% OIO discrepancy), the run is
terminated and restarted at a later time. When the error is
small, we improve accuracy by using the computed OIO value
based on empirical measurements, instead of the number of
OIOs issued by the injector.

5.1.2 Thin-Provisioned Storage Devices
Thin-provisioned storage devices allocate physical blocks

lazily on demand. In some cases, read IOs injected to a
thinly-provisioned storage array will return zero-filled data
very quickly, because the corresponding block has not even
been allocated.

We noticed extremely low slopes for such datastores be-
cause most of the IOs had very low latencies. To detect such
cases automatically, we check if the latency is smaller than a
threshold (by default, 1 ms) and spot-check the data to see
if it contains all zeros. If both of these conditions are met,
we mark the IO as thin-provisioned and remove it from our
measurements. If more than 80% of all points are discarded,
the run is marked invalid, and no slope value is computed.

5.1.3 Default Performance Models
If a performance model is not yet available for some data-

stores, Pesto assigns default models. This is done system-
atically by assigning either the average slope of the other
datastores in the system, or a default slope of 1.0 if none
of the datastores have valid models yet. This has proven
to be an effective heuristic in practice. For example, with
a thin-provisioned datastore, Pesto ends up placing a few
workloads on it, so that physical disk blocks will be allo-
cated and subsequent attempts at constructing a real model
can succeed.

5.2 Workload Models
In Pesto, fine-grained statistics are measured on a per-

virtual-disk level periodically (every 20 seconds) at each of
the hosts. These are then sent every 30 minutes to the
vSphere management server, which uses the P 2 [15] algo-
rithm to compute online percentiles for important workload
metrics. Similar to BASIL [13], our modeling technique
primarily characterizes a workload using four parameters:
OIOs, IO size, read/write ratio and randomness.

As a workload is moved from one device to another, its
workload model may change because of the underlying device
characteristics, as described in Section 4.1. For a closed
workload, new IO requests are generated only when earlier
requests complete. Therefore, we expect that the number
of OIOs will not change as we move the workload from one
storage device to another. For an open workload, new IO
requests arrive independently of IO completions. For open
workloads, we expect a certain degree of change, though
drastic changes are rare in practice. This is because the
applications running in a VM typically use a certain number
of threads to issue IOs, limiting the incoming workload.

In the next three sections, we describe how the automati-
cally generated LQ-slope model and the workload models are
used for relieving congestion on a datastore, balancing IO
load across multiple datastores, and determining the overall
capacity needed to support a given set of workloads.

5.3 Congestion Management
In general, resource allocation policies are needed only for

resources that are congested. In the absence of contention,
each client should receive the service it requires. When re-
sources are scarce, congestion management can provide dif-
ferential quality-of-service to clients of varying importance.

In the case of storage devices, which operate more effi-
ciently with higher OIO values, it is not always clear when
to start engaging resource management control over the IOs
issued by various clients. For example, PARDA [11] throttled
IO from hosts accessing shared storage in a distributed vir-
tualized environment when the average observed IO latency
exceeded a specified threshold. However, PARDA placed the
burden of determining an appropriate latency threshold on
the system administrator.

% of Tests Worse

Initial Test Setup System any >10% regression

Space balanced BASIL 13% 5.0%
IO balanced BASIL 21% 5.3%
Space balanced Pesto 0% 0.0%
IO balanced Pesto 0% 0.0%

Table 2: Comparison of BASIL and Pesto results for
runs using diverse workloads and 150 test cases.

Using Pesto, an administrator can either specify a desired
latency threshold or specify a fraction α of peak throughput.
The latency threshold Lα corresponding to throughput of
α/m can be computed as:

Lα − C

m× Lα
=

α

m
(8)

Lα =
C

1 − α
(9)

An interesting implication of this result is that the latency
corresponding to a certain fraction of peak throughput is
independent of the slope of the device. This makes sense,
since as the performance of a device increases, it should be
able to handle more OIOs for a given latency value. Hence
the number of outstanding IOs will vary based on the per-
formance of a device, but not the latency, as long as the
intercept is same.

We validated this result by comparing predicted through-
put at certain latencies with actual throughput. As shown
in Figure 3, the predicted value of throughput matches the
actual observed value closely. Similar results were observed
for several other devices, including those listed in Figure 4.

5.4 IO Load Balancing
Congestion management addresses contention only at a

single storage device. The goal of IO load balancing is to
ensure that no single device is overloaded while others are
lightly utilized. The basic idea is to equalize the latency
observed across devices, similar to BASIL [13].

There are two key differences between BASIL and Pesto
load balancing. First, Pesto uses a device model computed
by a workload injector, which is more accurate and can
be obtained quickly, independent of the actual workload
running on the device. Second, Pesto performs additional
cost-benefit analysis for each move that is considered. Due
to the lack of cost-benefit, BASIL led to bad moves causing
performance regression in some cases. We tested against
BASIL for two different cases, where the initial placement
is done in a space- and IO-balanced manner. Table 2 shows
the results for BASIL and Pesto. Next, we explain our cost-
benefit functions in more detail.

For each candidate virtual disk migration that is evaluated,
there is a source datastore src and a destination datastore
dst. Pesto first filters the move if the 50th- to 90th-percentile
src latencies are lower than the corresponding dst values.
BASIL performed this check only for the normalized load on
the source and destination datastores. If these checks pass,
Pesto computes the cost and benefit for a move. A candidate
move is selected only if its benefit exceeds its cost.

5.4.1 Cost-Benefit Computation
Cost: Storage migration induces a non-trivial load on the

source and destination during the dominant copy phase of

the operation [20]. For each move, Pesto again computes the
change in source latency and destination latency using the
LQ-slope value and the number of OIOs induced by storage
migration (typically 16). Given these numbers, we use the
following equation to compute the cost:

Cost = Qsrc × ∆Lsrc +Qdst × ∆Ldst (10)

Since we maintain percentile values for all these numbers,
the cost is computed for each percentile and summed up to
obtain the total cost. This cost is paid for the duration of
the migration, which is estimated by considering the total
IOPS available at source and destination. Available IOPS
are computed by using the peak IOPS estimation at each
datastore and the existing IOPS already being used. The
lower of the available IOPS at source and destination, along
with the disk size, is used to estimate the migration time.

Benefit: For each move we compute the change in source
latency and destination latency by using the current latency
and the fraction of the load that is being moved. If the
destination has no load, we use the LQ-slope to compute
the estimated latency at the destination using the OIOs
corresponding to the move. Once we have these numbers,
we use the following equation to compute the benefit:

Benefit = Qsrc × ∆Lsrc − Qdst × ∆Ldst
+ Qmig × (Lbeforesrc − Lafterdst)

(11)

As with the cost, the benefit is computed for each percentile
value and summed to obtain the total benefit. Pesto con-
servatively estimates the duration of the benefit to be the
invocation frequency of the load-balancing module (set to 16
hours by default).

5.4.2 Other Features Enabled by Pesto
Initial Placement: During a typical initial placement,

Pesto does not have a workload model for the new virtual
disk being placed. We cannot use all-zero statistics in this
case, as that could result in all new virtual disks being placed
on only one or a few datastores. Instead, we compute the
average workload model for all existing virtual disks and use
this average for the incoming disk. Candidate placements
for the new disk are considered on each datastore and the
one resulting in the most-balanced placement is selected.

Datastore Removal: Administrators may want to re-
move a datastore from active use, in order to fix some faults
or simply to eliminate it. We refer to this operation as
putting a datastore into maintenance mode. Pesto provides
this feature by migrating all of the virtual disks from that
datastore to the remaining datastores. This effectively re-
sults in a series of initial placement operations, except that
valid workload models already exist for the virtual disks.

Datastore Addition: The case of a new datastore being
added to the system is handled by regular load balancing,
using the newly-created device model. If for any reason the
model is not yet available, a conservative default model is
used for the datastore (see Section 5.1.3).

5.5 Capacity Planning
Capacity planning is a common storage provisioning task.

A typical capacity planning problem is: How many workloads
of a certain type can fit on a device? A complete answer
must consider both available space capacity (in GB), as well
as IO performance in terms of throughput and/or latency.

Space planning is an important problem, but relatively
straightforward if the storage device is not using technologies
such as thin provisioning or deduplication, which complicate
free-space calculations. To handle out-of-space situations,
we allow a user to set a space consumption threshold per
datastore. If any datastore exceeds this threshold, Pesto
considers the eviction of various virtual disks from that data-
store and selects a move that reduces space consumption
with the best IO load balance. In this paper, we focus on
performance-based capacity planning. We allow an adminis-
trator to specify the desired performance policy in terms of
either latency or a share of peak throughput.

5.5.1 Latency-Based Policy
With a latency-based policy, an administrator specifies a

latency threshold, Lmax, which serves as an upper bound
on the desired response time from the storage device. Dur-
ing capacity planning, workloads can be mapped to storage
devices until the projected Lmax is reached. This case is
relatively simple, since the latency bound can be converted
into the number of outstanding IOs that will keep the actual
latency below this bound using Equation 12. New workloads
can be added until the total expected OIOs reach Qmax.

Lmax = m×Qmax + C (12)

Once the Qmax limit is reached, it may still be feasible to
add more workloads if the latency is smaller than expected,
due to workload locality or caching at the array. In such
cases, one can add more workloads in an incremental and
cautious manner.

5.5.2 Peak-Throughput-Based Policy
Alternatively, an administrator can express a desired thresh-

old as a fraction α of the peak device throughput. During
capacity planning, workloads can be mapped to devices un-
til throughput reaches this threshold. We can determine
the number of outstanding IOs, Qα, that correspond to the
desired throughput using Equation 13. This policy can be
used to maximize the device utilization in terms of overall
throughput.

Qα
m×Qα + C

=
α

m
(13)

For capacity planning, an administrator may also want
to know if all datastores are operating close to their peak
throughput. If some datastores are operating close to the
congestion threshold set by PARDA, and IO load balancing
is not able to alleviate the problem, then new datastores
need to be added to handle the workload. This situation
can be detected easily by setting a threshold alarm on the
datastore latency metric.

In order to perform these computations, Pesto needs some
estimate of overall number of outstanding IOs for a given
workload. This may not be known in many cases. One
can obtain OIO values either by profiling similar workloads
or by using an approximate value based on average loads
from existing workloads. In case of misprediction, Pesto will
correct workload placements later, based on actual online
measurements.

6. EXPERIMENTAL EVALUATION
For our end-to-end system evaluation, we used an exper-

imental setup consisting of 6 ESX hosts and 8 datastores

Experimental Setup
7 datastores: 1 RAID-0, 6 RAID-5; all have FC disks
6 ESX hosts: 5 HP Proliant (4-16 cores, 8-16 GB
RAM), 1 Dell Poweredge (4 cores, 8 GB RAM)
28 VMs: 6 filebench-oltp, 6 filebench-mail, 6 filebench-
webserver, 1 DVDStore, 2 Swingbench, 7 Windows-
Iometer

Table 3: Experimental setup

Slope Intercept Peak Congestion

Datastore (ms) (ms) IOPS Threshold

Datastore1 0.55 5.18 1818 26 ms
Datastore2 0.54 5.93 1851 30 ms
Datastore3 0.22 5.90 4545 30 ms
Datastore4 0.48 5.10 2083 25 ms
Datastore5 0.27 4.28 3703 22 ms
Datastore6 0.29 4.70 3448 24 ms
Datastore7 1.02 11.12 1000 60 ms

Table 4: Datastore models and congestion thresh-
olds computed by Pesto.

backed by disks of different types and reliability levels in four
storage arrays from three different vendors: EMC CLARiioN,
Iomega and NetApp. We used 28 VMs, each with multiple
virtual disks, running both micro-benchmarks and real en-
terprise workloads. The unit of storage migration in Pesto is
a virtual disk; our setup included a total of 66 virtual disks.
Table 3 shows the experimental setup details. We used a
diverse set of workloads, hardware, and datastores in order
to represent the evolution of a datacenter over a few years.

6.1 Device Model and Congestion Avoidance
When we enabled Pesto, it was able to construct a de-

vice model from scratch within minutes for all datastores.
This is significant because BASIL requires workloads to be
running and would have taken several hours at a minimum
before producing performance models. In addition, Pesto
automatically computed the congestion threshold based on
the performance model and the desired operating point set
by the administrator. Table 4 shows the slope, intercept,
peak IOPS and congestion threshold latency values as com-
puted by Pesto. The automatic congestion thresholds were
computed based on the administrator-set operating point of
80% of peak throughput. The system can also be configured
to respect a global maximum for the congestion threshold
latency value.

Recall that PARDA [11] uses a fixed, manually set con-
gestion threshold (default of 30 ms), whereas Table 4 clearly
shows that the appropriate threshold varies over a range of
22 to 60 ms for datastores based on their disk types. With
Pesto, an administrator doesn’t need to worry about pick-
ing the best congestion threshold value, given the option to
instead choose an operating point in terms of a percentage
of peak throughput.

6.2 IO Load Balancing
We initially assigned virtual disks to datastores randomly,

but in a greedy manner so as to keep a space-balanced ar-
rangement. This focused our evaluation on Pesto’s perfor-
mance management algorithms, rather than the system’s
out-of-space avoidance heuristics. We ran the VM work-

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

La
te

nc
y

(m
s)

Time(Hours)

4 moves

2 moves

Datastore1
Datastore2
Datastore3
Datastore4
Datastore5
Datastore6
Datastore7

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t (

IO
P

S
)

Time(Hours)

Datastore1
Datastore2
Datastore3
Datastore4
Datastore5
Datastore6
Datastore7

(a) Datastore latencies (in ms) (b) Datastore throughput (in IOPS)

Figure 10: IO Load Balancing: Per-datastore latency and throughput observed during multi-hour experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Before-50 After-50 Before-70 After-70 Before-90 After-90

La
te

nc
y

(m
s)

Datastore1
Datastore2
Datastore3
Datastore4
Datastore5
Datastore6
Datastore7

Figure 11: Latency Balance: 50th, 70th and 90th per-
centile latencies before and after load balancing.

loads for eight hours. Based on the eight-hour statistics,
Pesto suggested 4 recommendations to move virtual disks
using storage vMotion [20, 34], which took approximately
40 minutes to complete. The workloads were not stopped
during this process. After running the workloads in the new
configuration for a while, Pesto recommended two additional
virtual disk movements; after that the system converged and
no further recommendations were generated.

Figure 10 plots per-datastore latency and throughput, av-
eraged over 5-minute intervals during our 18-hour run. The
initial four hours of each run are not shown, since nothing of
interest was observed during this warmup period.The plot-
ted data covers the time periods before, during and after the
storage migration recommendations were applied.

Figure 11 shows the 50th, 70th and 90th percentile la-
tency values used by the load balancing algorithm to perform
cost-benefit analysis and recommend migrations. The Pesto-
recommended moves improved overall average throughput
by 11% from 10900 to 12122 IOPS. Similarly, the overall
throughput-weighted average latency across all datastores
decreased by 16.9%, from 17.6 ms to 14.6 ms. Users often
care more about improvements in performance during peak
loads than they do about the average improvement. At the
70th percentile, the latency improvement was 19.8% whereas
an 18.8% lower latency was observed at the 90th percentile.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

La
te

nc
y

(m
s)

Time(Hours)

Datastore3 entering
maintenance mode

Datastore8 added

Datastore1
Datastore2
Datastore3
Datastore4
Datastore5
Datastore6
Datastore7
Datastore8

Figure 12: Datastore Changes: Latency observed
across datastore removal and addition.

Over time, the latency across datastores became more
balanced. This had the nice side effect of improving the
performance of virtual machines that were the worst off in
the previous, space-balanced configuration. All these im-
provements happened without manual intervention; Pesto
generated and applied recommendations automatically.

6.3 Datastore Maintenance Mode
We tested both initial placement and the datastore main-

tenance mode functionality in a single experiment: putting
Datastore3 into maintenance mode would force “initial place-
ment” of its 3 virtual disks onto the remaining datastores.
This experiment was conducted on the same testbed as in
Section 6.2, using the final, stable Pesto virtual disk place-
ment. Pesto recommended moving the 3 virtual disks to
Datastore4, Datastore5 and Datastore6, respectively.

Figure 12 shows the latency observed by all datastores.
The time on the x-axis is renumbered from 0. The main-
tenance mode operation was invoked at t = 5 hrs. Note
that the move destinations are the datastores with lower
latency. Datastore4 had higher latency after the move but
overall balance is maintained. Datastore5 received a virtual
disk issuing 25% writes, leading to a reduction in overall
latency, since writes typically return early from the array
cache with very low latencies. Datastore6 received a virtual

 0
 4
 8

 12
 16
 20

 0 1 2 3 4 5 6

La
te

nc
y

(m
s)

 VMs

 0
 4
 8

 12
 16
 20

 0 1 2 3 4 5 6

La
te

nc
y

(m
s)

 VMs

 0
 4
 8

 12
 16
 20

 0 1 2 3 4 5 6 7 8 9

La
te

nc
y

(m
s)

 VMs
(a) Latency (per-VM OIO=4) (c) Latency (per-VM OIO=6) (e) Latency (Heterogeneous VMs)

 400

 800

 1200

 1600

 0 1 2 3 4 5 6T
hr

ou
gh

pu
t (

IO
P

S
)

 VMs

 400

 800

 1200

 1600

 0 1 2 3 4 5 6T
hr

ou
gh

pu
t (

IO
P

S
)

 VMs

 400

 800

 1200

 1600

 0 1 2 3 4 5 6 7 8 9T
hr

ou
gh

pu
t (

IO
P

S
)

 VMs
(b) Throughput (per-VM OIO=4) (d) Throughput (per-VM OIO=6) (f) Throughput (Heterogeneous VMs)

Figure 14: Capacity Planning: Predicting number of VMs to reach a certain latency or throughput value.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Before-70 Removed-70 Added-70 Before-90 Removed-90 Added-90

La
te

nc
y

(m
s) Datastore3 entering

maintenance mode
Datastore8 added

Datastore1
Datastore2
Datastore3
Datastore4
Datastore5
Datastore6
Datastore7

Datastore8

Figure 13: 70th and 90th percentile latency values
before, after putting datastore in maintenance and
adding a replacement datastore

disk with very light load, so its latency didn’t change much.
Figure 13 shows the 70th and 90th percentile latencies across
datastores before and after the removal of Datastore3. We
observed that the variance was similar in both cases showing
that Pesto is able to place workloads in a balanced manner.

6.4 Adding a New Device
To test how Pesto handles the addition of a new datastore,

we continued the previous experiment, adding a new data-
store at time t = 8 hrs in Figure 12. Within the first two
minutes, Pesto computed a device model with m = 1.09 and
C = 5.43. It then recommended moving three virtual disks
from Datastore1, Datastore2 and Datastore4, respectively.
Figure 12 shows the datastore latencies before and after the
moves.

Note that the overall latency across all datastores is lower
and throughput is higher after the moves. This shows that
Pesto can quickly make use of additional resources that are
added to the system, mitigating higher latencies and improv-
ing overall throughput. Figure 13 shows the 70th and 90th

percentile latencies before and after the addition of Datas-
tore8. We again observed that the variance was similar in
both cases showing that Pesto is able to place virtual disks
on the new datastore while maintaining IO load balance.

6.5 Capacity Planning
We ran two experiments to test our capacity-planning

approach using homogeneous and heterogeneous workloads.
Our first experiment used identical workloads running in a
set of VMs, each configured as an OLTP workload using
Filebench [1] on a 20 GB data disk and a 1 GB log disk.
The data disk is separate from the log disk and the VM’s
OS system disk. The experimental virtual disks were all
placed on a single storage device, consisting of 6 FC disks in
a RAID-5 configuration on an EMC CLARiioN array having
a performance model with m = 0.49 and C = 4.98.

The Filebench workload profiles for the OLTP VMs were
configured for either 4 or 6 outstanding IOs. We tested two
policies: one where VMs can be placed until the latency
reaches 15 ms, and another where throughput reaches 66%
of the peak value. Based on the performance model, both
of these conditions happen at 20 OIOs. This corresponds to
the number of VMs that could be accommodated as 5 VMs
with 4 OIOs, or 3 VMs with 6 OIOs. Figures 14(a)-(d) plot
latency and throughput as the number of VMs accessing the
LUN is varied from 1 to 5, each running an OLTP workload
with either 4 or 6 OIOs. The estimated capacity based on
the performance model closely matches the actual capacity.

Next, we experimented with heterogeneous workloads con-
sisting of three different workload profiles in Filebench: OLTP,
webserver and varmail. Each workload runs in its own VM,
and its corresponding virtual disks are placed on the same
datastore used in the first experiment. We added the work-
loads in the following order: two varmail, two webservers
and then four OLTP VMs. Given the workload profile, we
expect 4-6 OIOs from varmail, 1-2 OIOs from webserver and
4 OIOs from OLTP workloads.

Recall that based on the performance model, 15 ms latency
should correspond to Q = 20 OIOs. Given the OIO profiles
for these VMs and the order in which VMs are added, we
expect that the datastore should be able to support 2 varmail,
2 webserver and 2 OLTP workloads – a total of 22 OIOs –
before reaching the latency target of 15 ms. Figure 14(e)
shows that after adding these VMs the latency of the LUN
is 15.07 ms. Similarly, we expect the throughput to be close
to 75% of peak throughput once all the VMs are added: this
is confirmed in Figures 14(e)-(f), which indicate throughput
of roughly 1500 IOPS at 20 ms latency. Our throughput

predictions are less accurate, but the peak throughput is
inline with the model predictions.

7. CONCLUSIONS
In this paper, we presented Pesto, an automated and on-

line storage management system for virtualized datacenters.
At its core, Pesto uses our new analytical result that the peak
throughput of a storage device is approximately equal to the
inverse of its LQ-slope (i.e., the rate of change of latency
against the number of outstanding IOs). Leveraging this
result, Pesto constructs online device models and supports
powerful operations across a group of datastores, manag-
ing them as a single pool of resources. Our experimental
evaluation on a diverse set of storage devices demonstrated
that Pesto’s online device model is accurate enough to guide
storage planning and management decisions. In addition,
we showed the effectiveness of our modeling techniques for
several well-known storage provisioning tasks, including load
balancing, addition and removal of datastores, congestion
management and capacity planning. Pesto-recommended
placement improved overall throughput by more than 10%
and reduced peak-load latency by up to 19%.

Apart from the practical applications shown in this paper,
our black-box model can be used to study the performance
of LUNs without requiring physical access. This is especially
useful in cloud scenarios, where customers leasing storage
from service providers do not have visibility into the pro-
vided service levels. Using our technique, customers can
verify device performance quickly, using an injected work-
load, and estimate the peak throughput of the device. The
LQ-slope for a standard workload can be used to compare
the relative performance of LUNs [13]. We believe that the
storage industry could benefit from using LQ-slope as an
independently-verifiable metric to describe the performance
of devices with particular configurations.

Acknowledgments
We would like to thank Anne Holler, Shankari Kalyanaraman,
Limin Wang, Tahir Mobashir, Rajasekar Shanmugam and all
other members of resource management team at VMware,
who contributed to building the necessary infrastructure,
statistics collection framework, test suite, UI workflows and
helped create a product based on this research. We are
very grateful to Jinpyo Kim, Tariq Magdon-Ismail, Emre
Celebi, Chethan Kumar and Xiaoyun Zhu for extensive per-
formance testing and numerous discussions that helped us
uncover many issues and add various optimizations during
the development process. We are also thankful to the anony-
mous reviewers for their valuable insights and feedback that
helped us improve the paper and add necessary details.

8. REFERENCES
[1] Filebench. http://solarisinternals.com/si/tools/

filebench/index.php.

[2] Iometer. http://www.iometer.org.

[3] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant, M. Spasojevic,
A. Veitch, and J. Wilkes. Minerva: An Automated Resource
Provisioning Tool for Large-Scale Storage Systems. In ACM
Transactions on Computer Systems, Nov. 2001.

[4] E. Anderson. Simple table-based modeling of storage devices.
Technical report, HPL-SSP-2001-4, HP Labs, July 2001.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: running circles around storage
administration. In Proceedings of the 1st USENIX
conference on File and Storage Technologies, FAST’02,
Berkeley, CA, USA, 2002. USENIX Association.

[6] S. Chen and D. Towsley. The Design and Evaluation of
RAID 5 and Parity Striping Disk Array Architectures.
Journal on Parallel and Distributed Computing,
17(1-2):58–74, 1993.

[7] S. Chen and D. Towsley. A performance evaluation of RAID
architectures. IEEE Transactions on Computers,
45:1116–1130, 1996.

[8] T. E. Denehy, J. Bent, F. I. Popovici, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Deconstructing storage arrays.
In Proceedings of the 11th international conference on
Architectural support for programming languages and
operating systems, ASPLOS-XI, pages 59–71, New York,
NY, USA, 2004. ACM.

[9] G. Ganger. Automated disk drive characterization.
http://www.pdl.cmu.edu/Dixtrac/index.shtml.

[10] C. C. Gotlieb and G. H. MacEwen. Performance of
Movable-Head Disk Storage Devices. Journal of the ACM,
20(4):604–623, 1973.

[11] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA:
Proportional allocation of resources for distributed storage
access. In Proccedings of the 7th conference on File and
Storage Technologies, pages 85–98, Berkeley, CA, USA,
2009. USENIX Association.

[12] A. Gulati, C. Kumar, and I. Ahmad. Storage Workload
Characterization and Consolidation in Virtualized
Environments. In Workshop on Virtualization Performance:
Analysis, Characterization, and Tools (VPACT), 2009.

[13] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL:
Automated IO load balancing across storage devices. In
Proceedings of the 8th USENIX conference on File and
Storage Technologies, FAST’10, Berkeley, CA, USA, 2010.
USENIX Association.

[14] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach, Fourth edition. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[15] R. Jain and I. Chlamtac. The P2 algorithm for dynamic
calculation of quantiles and histograms without storing
observations. Communications of the ACM, 28:1076–1085,
October 1985.

[16] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton. Inducing
models of black-box storage arrays. Technical Report
HPL-2004-108, HP Labs, 2004.

[17] M. Kim and A. Tantawi. Asynchronous disk interleaving:
Approximating access delays. IEEE Transactions on
Computers, 40(7):801–810, 1991.

[18] E. K. Lee and R. H. Katz. An analytic performance model
of disk arrays. SIGMETRICS Performance Evaluation
Review, 21(1):98–109, 1993.

[19] J. D. C. Little. A Proof for the Queuing Formula: L = λW .
Operations Research, 9(3), 1961.

[20] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai. The
Design and Evolution of Live Storage Migration in VMware
ESX. In Proc. USENIX Annual Technical Conference (ATC
’11), June 2011.

[21] A. Merchant and P. S. Yu. An analytical model of
reconstruction time in mirrored disks. Performance
Evaluation, 20:115–129, May 1994.

[22] A. Merchant and P. S. Yu. Analytic Modeling of Clustered
RAID with Mapping Based on Nearly Random Permutation.
IEEE Transactions on Computers, 45(3), 1996.

[23] D. R. Merrill. Storage economics: Four principles for
reducing total cost of ownership. May 2009.
http://www.hds.com/assets/pdf/four-principles-for-
reducing-total-cost-of-ownership.pdf.

[24] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng,
and G. R. Ganger. Modeling the relative fitness of storage.

SIGMETRICS Performance Evaluation Review, 35(1),
2007.

[25] J. D. Padhye, A. L. Rahatekar., and L. W. Dowdy. A
Simple LAN File Placement Strategy. In International
CMG Conference, 1995.

[26] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27:17–28, 1994.

[27] E. Shriver, A. Merchant, and J. Wilkes. An Analytic
Behavior Model for Disk Drives with Readahead Caches
and Request Reordering. SIGMETRICS Performance
Evaluation Review, 26(1):182–191, 1998.

[28] N. Simpson. Building a data center cost model. Jan 2010.
http://www.burtongroup.com/Research/DocumentList.
aspx?cid=49.

[29] E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan,
and G. R. Ganger. Informed data distribution selection in a
self-predicting storage system. In International Conference
on Autonomic Computing, 2006.

[30] E. Thereska and G. R. Ganger. IRONModel: Robust
performance models in the wild. SIGMETRICS
Performance Evaluation Review, 36:253–264, June 2008.

[31] A. Thomasian and J. Menon. Performance analysis of
RAID5 disk arrays with a vacationing server model for
rebuild mode operation. In Proceedings of the Tenth
International Conference on Data Engineering, pages
111–119. IEEE Computer Society, 1994.

[32] M. Uysal, G. A. Alvarez, and A. Merchant. A modular,
analytical throughput model for modern disk arrays. In
IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems
(MASCOTS), 2001.

[33] E. Varki, A. Merchant, J. Xu, and X. Qiu. Issues and
challenges in the performance analysis of real disk arrays.
IEEE Transactions on Parallel and Distributed Systems,
15:559–574, 2004.

[34] VMware, Inc. VMware Storage VMotion: Non-Disruptive,
Live Migration of Virtual Machine Storage, 2007. http://
vmware.com/files/pdf/storage_vmotion_datasheet.pdf.

[35] VMware, Inc. vSphere Resource Management Guide: ESX
4.1, ESXi 4.1, vCenter Server 4.1. 2010.

[36] VMware, Inc. VMware vSphere. 2011.
http://www.vmware.com/products/vsphere/overview.html.

[37] VMware, Inc. VMware vStorage VMFS. 2011.
http://www.vmware.com/files/pdf/VMware-vStorage-
VMFS-DS-EN.pdf.

[38] T. Voellm. Useful IO profiles for simulating various
workloads. http://blogs.msdn.com/b/tvoellm/archive/
2009/05/07/useful-io-profiles-for-simulating-
various-workloads.aspx.

[39] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos,
and G. R. Ganger. Storage Device Performance Prediction
with CART Models. In IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS), pages 588–595,
2004.

[40] P. S. Yu and A. Merchant. Analytic modeling and
comparisons of striping strategies for replicated disk arrays.
IEEE Transactions on Computers, 44:419–433, March 1995.

