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Abstract

This thesis presents flexible abstractions for specifying resource management policies, together
with efficient mechanisms for implementing those abstractions. Several novel scheduling tech-
niques are introduced, including both randomized and deterministic algorithms that provide
proportional-share control over resource consumption rates. Such control is beyond the capa-
bilities of conventional schedulers, and is desirable across a broad spectrum of systems that
service clients of varying importance. Proportional-share scheduling is examined for several
diverse resources, including processor time, memory, access to locks, and disk bandwidth.

Resource rights are encapsulated by abstract, first-class objects called tickets. An active
client consumes resources at a rate proportional to the number of tickets that it holds. Tickets
can be issued in different amounts and may be transferred between clients. A modular currency
abstraction is also introduced to flexibly name, share, and protect sets of tickets. Currencies
can be used to isolate or group sets of clients, enabling the modular composition of arbitrary
resource management policies.

Two different underlying mechanisms are introduced to support these abstractions. Lottery
scheduling is a novel randomized resource allocation mechanism. An allocation is performed
by holding a lottery, and the resource is granted to the client with the winning ticket. Stride
scheduling is a deterministic resource allocation mechanism that computes a representation
of the time interval, or stride, that each client must wait between successive allocations.
Stride scheduling cross-applies and generalizes elements of rate-based flow control algorithms
designed for networks to dynamically schedule other resources such as processor time. A novel
hierarchical stride algorithm is also introduced that achieves better throughput accuracy than
prior schemes, and can reduce response-time variability for some workloads.

The proposed techniques are compared and evaluated using a variety of quantitative ex-
periments. Simulation results and prototype implementations for operating system kernels
demonstrate flexible control over a wide range of resources and applications.
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Chapter 1

Introduction

Scheduling computations in concurrent systems is a complex, challenging problem. Resources

must be multiplexed to service requests of varying importance, and the policy chosen to manage

this multiplexing can have an enormous impact on throughput and response time. Effective

resource management requires knowledge of both user preferences and application-specificper-

formance characteristics. Unfortunately, users, applications, and other clients of resources are

typically given very limited control over resource management policies. Traditional operating

systems centrally manage machine resources within the kernel [EKO95]. Clients are commonly

afforded only crude control through poorly understood, ad-hoc scheduling parameters. Worse

yet, such parameters do not offer the encapsulation or modularity properties required for the

engineering of large software systems.

This thesis advocates a radically different approach to computational resource management.

Resource rights are treated as first-class objects representing well-defined resource shares.

Clients are permitted to directly redistribute their resource rights in order to control computation

rates. In addition, a simple, powerful abstraction is provided to facilitate modular composition

of resource management policies. As a result, custom policies can be expressed conveniently

at various levels of abstraction. The role of the operating system in resource management is

reduced to one of enforcement, ensuring that no client is able to consume more than its entitled

share of resources.

This chapter presents a high-level synopsis of the thesis. The next section contains a basic

overview of the key thesis components. This is followed by highlights of the main contributions

of the thesis, and a brief summary of related research. The chapter closes with a description of

the overall organization for the rest of the thesis.
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1.1 Overview

Accurate control over service rates is desirable across a broad spectrum of systems that process

requests of varying importance. For long-running computations such as scientific applications

and simulations, the consumption of computing resources that are shared among different users

and applications must be regulated. For interactive computations such as databases and media-

based applications, programmers and users need the ability to rapidly focus available resources

on tasks that are currently important.

This thesis proposes a general framework for specifying dynamic resource management

policies, together with efficient mechanisms for implementing that framework. Resource rights

are encapsulated by abstract, first-class objects called tickets. An active client is entitled to

consume resources at a rate proportional to the number of tickets that it holds. Tickets can

be issued in different amounts and may be transferred between clients. A modular currency

abstraction is also introduced to flexibly name, share, and protect sets of tickets. Currencies

can be used to isolate or group sets of clients, enabling the modular composition of arbitrary

resource management policies.

Two different underlying proportional-share mechanisms are introduced to support this

framework. Lottery scheduling is a novel randomized resource allocation mechanism. An

allocation is performed by holding a lottery, and the resource is granted to the client with

the winning ticket. Stride scheduling is a deterministic resource allocation mechanism that

computes a representation of the time interval, or stride, that each client must wait between

successive allocations. Stride scheduling cross-applies and generalizes elements of rate-based

flow control algorithms designed for networks [DKS90, Zha91, ZK91, PG93] to dynamically

schedule other resources such as processor time. Novel variants of these core mechanisms

are also introduced to provide improved proportional-share accuracy for many workloads. In

addition, a number of new resource-specific techniques are proposed for proportional-share

management of diverse resources including memory, access to locks, and disk bandwidth.

The proposed proportional-share techniques are compared and evaluated using a variety

of quantitative experiments. Extensive simulation results and prototype process-scheduler

implementations for real operating system kernels demonstrate flexible control over a wide

range of resources and applications. The overall system overhead imposed by these unoptimized

prototypes is comparable to that of the default timesharing policies that they replaced.

16



1.2 Contributions

This thesis makes several research contributions: a versatile new framework for specifying

resource management policies, novel algorithms for proportional-share control over time-

shared resources, and specialized techniques for managing other resource classes. The general

resource management framework is based on direct, proportional-share control over service

rates using tickets and currencies. Its principal features include:

� Simplicity: An intuitive notion of relative resource shares is used instead of complex,

non-linear, or ad-hoc scheduling parameters. Resource rights vary smoothly with ticket

allocations, allowing precise control over computation rates. The resource rights repre-

sented by tickets also aggregate in a natural additive manner.

� Modularity: Modularity is key to good software engineering practices. Currencies pro-

vide explicit support for modular abstraction of resource rights. The currency abstraction

is analogous to class-based abstraction of data in object-oriented languages with multiple

inheritance. Collections of tickets can be named, shared, and protected in a modular way.

This enables the resource management policies of concurrent modules to be insulated

from one another, facilitating modular decomposition.

� Flexibility: Sophisticated patterns of sharing and protection can be conveniently ex-

pressed for resource rights, including hierarchical organizations and relationships de-

fined by more general acyclic graphs. Resource management policies can be defined for

clients at various levels of abstraction, such as threads, applications, users, and groups.

� Adaptability: Client service rates degrade gracefully in overload situations, and active

clients benefit proportionally from extra resources when some allocations are not fully

utilized. These properties facilitate adaptive applications that can respond to changes in

resource availability.

� Generality: The framework is intended for general-purpose computer systems, and is

not dependent on restrictive assumptions about clients. The same general framework can

be applied to a wide range of diverse resources. It can also serve as a solid foundation

for simultaneously managing multiple heterogeneous resources.

An implementation of this general framework requires proportional-share scheduling al-

gorithms that efficiently support dynamic environments. Another contribution of this thesis is

the development of several new algorithms for proportional-share scheduling of time-shared

resources. Both randomized and deterministic mechanisms are introduced:

17



� Lottery scheduling: A novel randomized resource allocation mechanism that inherently

supports dynamic environments. Lottery scheduling is conceptually simple and easily

implemented. However, it exhibits poor throughput accuracy over short allocation

intervals, and produces high response-time variability for low-throughput clients.

� Multi-winner lottery scheduling: A variant of lottery scheduling that produces better

throughput accuracy and lower response-time variability for many workloads.

� Stride scheduling: A deterministic resource allocation mechanism that implements dy-

namic, proportional-share control over processor time and other resources. Compared

to the randomized lottery-based approaches, stride scheduling achieves significantly im-

proved accuracy over relative throughput rates, with significantly lower response-time

variability.

� Hierarchical stride scheduling: A novel recursive application of the basic stride schedul-

ing technique that provides a tighter bound on throughput accuracy than ordinary stride

scheduling. Hierarchical stride scheduling can also reduce response-time variability for

some workloads.

Additional contributions include new resource-specific techniques for dynamic,proportional-

share scheduling of diverse resources. The following mechanisms were developed to manage

synchronization resources, space-shared resources, and disk I/O bandwidth:

� Ticket inheritance: An extension to the basic algorithms for time-shared resources

to schedule synchronization resources such as lock accesses. This technique enables

proportional-share control over computation rates despite contention for locks.

� Inverse lottery scheduling: A variant of lottery scheduling for dynamic, revocation-based

management of space-shared resources such as memory. A randomized inverse lottery

selects a “loser” that is forced to relinquish a resource unit.

� Minimum-funding revocation: A simple deterministic scheme for proportional-share

control over space-shared resources. A resource unit is revoked from the client expending

the fewest tickets per resource unit. Compared to randomized inverse lottery scheduling,

minimum funding revocation is more efficient and converges toward proportional shares

more rapidly.

� Funded delay cost scheduling: A deterministic disk scheduling algorithm presented as a

first step toward proportional-share control over disk bandwidth.
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1.3 Related Work

This section places the research described in this thesis in context by presenting an overview

of related work. Computational resource management techniques from a variety of fields are

briefly summarized; a more complete discussion appears in Chapter 7.

The dominant processor scheduling paradigm in operating systems is priority schedul-

ing [Dei90, Tan92]. Conventional timesharing policies employ dynamic priority adjustment

schemes based on ad-hoc, non-linear functions that are poorly understood. Manipulating

scheduling parameters to achieve specific results in such systems is at best a black art.
�

At-

tempts to control service rates using timesharing schedulers have been largely unsuccessful,

providing only coarse, limited control [Hel93, FS95]. Priority schedulers also lack desirable

modularity properties that are essential for good software engineering practices.

Fair share schedulers attempt to allocate resources so that users get fair machine shares over

long periods of time [Hen84, KL88, Hel93]. These schedulers are layered on top of conventional

priority schedulers, and dynamically adjust priorities to push actual usage closer to entitled

shares. The algorithms used by these systems are generally complex, requiring periodic usage

monitoring, complicated dynamic priority adjustments, and administrative parameter tuning to

ensure fairness on a time scale of minutes.

Despite their ad-hoc treatment in most operating systems, priorities are used in a clear

and consistent manner in the domain of real-time systems [BW90]. Real-time schedulers

must ensure that absolute scheduling deadlines are met in order to ensure correctness and

avoid catastrophic failures [Bur91]. The widely-used rate-monotonic scheduling technique

[LL73, SKG91] statically assigns priorities as a monotonic function of the rate of periodic

tasks. A task’s priority does not depend on its importance; tasks with shorter periods are always

assigned higher priorities. Another common technique is earliest deadline scheduling [LL73],

which always schedules the task with the closest deadline first. Higher-level abstractions

based on real-time scheduling have also been developed [MST93, MST94]. However, real-

time schedulers generally depend upon very restrictive assumptions, such as precise static

knowledge of task execution times and prohibitions on task interactions. Strict limits are also

placed on processor utilization, so that even transient overloads are disallowed.

A number of deterministic proportional-share scheduling algorithms have recently been

proposed [BGP95, FS95, Mah95, SAW95]. Several of these techniques [FS95, Mah95, SAW95]

make explicit comparisons to lottery scheduling [WW94], although none of them demonstrate

support for the higher-level abstractions introduced with lottery scheduling. In general, the

�

Anyone who has had the misfortune of trying to implement precise scheduling behavior by setting Unix nice
values can attest to this fact.
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proportional-share accuracy of these schedulers is better than lottery scheduling, and compara-

ble to stride scheduling. However, the algorithms used by these schedulers require expensive

operations to transform client state in response to dynamic changes. Since dynamic operations

cannot be implemented efficiently, these approaches are not suitable for supporting the general

resource management framework proposed in this thesis.

Proportional-share algorithms have also been designed for rate-based flow control in packet-

switched networks [DKS90, Zha91, ZK91, PG93]. The core stride scheduling algorithm

presented in this thesis essentially cross-applies and extends elements of the virtual clock

[Zha91] and weighted fair queueing [DKS90] algorithms to the domain of dynamic processor

scheduling. To the best of my knowledge, stride scheduling is the first cross-application of

these techniques for scheduling resources other than network bandwidth. The hierarchical

stride scheduling algorithm introduced in this thesis is a novel recursive application of the

stride-based technique, extended for dynamic environments. An unrelated scheme from the

domain of network traffic management is also similar to randomized lottery scheduling. The

statistical matching technique proposed for the AN2 network exploits randomness to efficiently

support frequent dynamic changes in bandwidth allocations [AOST93].

Microeconomic schedulers are based on resource allocation techniques in real economic

systems [MD88, HH95a, Wel95]. Money encapsulates resource rights, and a price mechanism

is used to allocate resources. Microeconomic schedulers [DM88, Fer89, WHH
�

92, Wel93,

Bog94] typically use auctions to determine prices and allocate resources among clients that

bid monetary funds. However, auction dynamics can be unexpectedly volatile, and bidding

overhead limits the applicability of auctions to relatively coarse-grained tasks. Other market-

based approaches that do not rely upon auctions have also been applied to managing processor

and memory resources [Ell75, HC92, CH93]. The framework and mechanisms proposed in

this thesis are compatible with a market-based resource management philosophy.

1.4 Organization

This section previews the remaining chapters, and describes the overall organization of the

thesis. The next chapter presents a general framework for specifying resource management

policies in concurrent systems. The use of tickets and currencies is shown to facilitate flexible,

modular control over resource management. Chapter 3 introduces several scheduling algo-

rithms that can be used as a substrate for implementing this framework. Both randomized

lottery-based techniques and deterministic stride-based approaches are presented for achieving

proportional-share control over resource consumption rates. Chapter 4 examines and com-

pares the performance of these scheduling techniques in both static and dynamic environments.
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Performance is evaluated by deriving basic analytical results and by conducting a wide range

of quantitative simulation experiments.

Prototype implementations of proportional-share process schedulers for real operating sys-

tem kernels are described in Chapter 5. The results of quantitative experiments involving a

variety of user-level applications are presented to demonstrate flexible, responsive control over

application service rates. Chapter 6 considers the application of proportional-share scheduling

techniques to diverse resources, including memory, disk bandwidth, and access to locks. Ex-

tensions to the core scheduling techniques are presented, and several novel resource-specific

algorithms are also introduced. Chapter 7 discusses a wide variety of research related to

computational resource management in much greater detail than the brief summary presented

in this chapter. Finally, Chapter 8 summarizes the conclusions of this thesis and highlights

opportunities for additional research.

21



22



Chapter 2

Resource Management Framework

This chapter presents a general,flexible framework for specifying resource management policies

in concurrent systems. Resource rights are encapsulated by abstract, first-class objects called

tickets. Ticket-based policies are expressed using two basic techniques: ticket transfers and

ticket inflation. Ticket transfers allow resource rights to be directly transferred and redistributed

among clients. Ticket inflation allows resource rights to be changed by manipulating the overall

supply of tickets. A powerful currency abstraction provides flexible, modular control over

ticket inflation. Currencies also support the sharing, protecting, and naming of resource rights.

Several example resource management policies are presented to demonstrate the versatility of

this framework.

2.1 Tickets

Resource rights are encapsulated by first-class objects called tickets. Tickets can be issued

in different amounts, so that a single physical ticket may represent any number of logical

tickets. In this respect, tickets are similar to monetary notes which are also issued in different

denominations. For example, a single ticket object may represent one hundred tickets, just as

a single $100 bill represents one hundred separate $1 bills.

Tickets are owned by clients that consume resources. A client is considered to be active

while it is competing to acquire more resources. An active client is entitled to consume resources

at a rate proportional to the number of tickets that it has been allocated. Thus, a client with

twice as many tickets as another is entitled to receive twice as much of a resource in a given time

interval. The number of tickets allocated to a client also determines its entitled response time.

Client response times are defined to be inversely proportional to ticket allocations. Therefore, a

client with twice as many tickets as another is entitled to wait only half as long before acquiring

a resource.
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call

reply

Figure 2-1: Example Ticket Transfer. A client performs a ticket transfer to a server during a
synchronous remote procedure call (RPC). The server executes with the resource rights of the client,
and then returns those rights during the RPC reply.

Tickets encapsulate resource rights that are abstract, relative, and uniform. Tickets are

abstract because they quantify resource rights independently of machine details. Tickets are

relative since the fraction of a resource that they represent varies dynamically in proportion to

the contention for that resource. Thus, a client will obtain more of a lightly contended resource

than one that is highly contended. In the worst case, a client will receive a share proportional

to its share of tickets in the system. This property facilitates adaptive clients that can benefit

from extra resources when other clients do not fully utilize their allocations. Finally, tickets

are uniform because rights for heterogeneous resources can be homogeneously represented as

tickets. This property permits clients to use quantitative comparisons when making decisions

that involve tradeoffs between different resources.

In general, tickets have properties that are similar to those of money in computational

economies [WHH
�

92]. The only significant difference is that tickets are not consumed when

they are used to acquire resources. A client may reuse a ticket any number of times, but a ticket

may only be used to compete for one resource at a time. In economic terms, a ticket behaves

much like a constant monetary income stream.

2.2 Ticket Transfers

A ticket transfer is an explicit transfer of first-class ticket objects from one client to

another. Ticket transfers can be used to implement resource management policies by directly

redistributing resource rights. Transfers are useful in any situation where one client blocks

waiting for another. For example, Figure 2-1 illustrates the use of a ticket transfer during a

synchronous remote procedure call (RPC). A client performs a temporary ticket transfer to loan

its resource rights to the server computing on its behalf.
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Ticket transfers also provide a convenient solution to the conventional priority inversion

problem in a manner that is similar to priority inheritance [SRL90]. For example, clients waiting

to acquire a lock can temporarily transfer tickets to the current lock owner. This provides the

lock owner with additional resource rights, helping it to obtain a larger share of processor time

so that it can more quickly release the lock. Unlike priority inheritance, transfers from multiple

clients are additive. A client also has the flexibility to split ticket transfers across multiple

clients on which it may be waiting. These features would not make sense in a priority-based

system, since resource rights do not vary smoothly with priorities.

Ticket transfers are capable of specifying any ticket-based resource management policy,

since transfers can be used to implement any arbitrary distribution of tickets to clients. However,

ticket transfers are often too low-level to conveniently express policies. The exclusive use of

ticket transfers imposes a conservation constraint: tickets may be redistributed, but they cannot

be created or destroyed. This constraint ensures that no client can deprive another of resources

without its permission. However, it also complicates the specification of many natural policies.

For example, consider a set of processes, each a client of a time-shared processor resource.

Suppose that a parent process spawns child subprocesses and wants to allocate resource rights

equally to each child. To achieve this goal, the parent must explicitly coordinate ticket transfers

among its children whenever a child process is created or destroyed. Although ticket transfers

alone are capable of supporting arbitrary resource management policies, their specification is

often unnecessarily complex.

2.3 Ticket Inflation and Deflation

Ticket inflation and deflation are alternatives to explicit ticket transfers. Client resource rights

can be escalated by creating more tickets, inflating the total number of tickets in the system.

Similarly, client resource rights can be reduced by destroying tickets, deflating the overall

number of tickets. Ticket inflation and deflation are useful among mutually trusting clients,

since they permit resource rights to be reallocated without explicitly reshuffling tickets among

clients. This can greatly simplify the specification of many resource management policies. For

example, a parent process can allocate resource rights equally to child subprocesses simply by

creating and assigning a fixed number of tickets to each child that is spawned, and destroying

the tickets owned by each child when it terminates.

However, uncontrolled ticket inflation is dangerous, since a client can monopolize a resource

by creating a large number of tickets. Viewed from an economic perspective, inflation is a form

of theft, since it devalues the tickets owned by all clients. Because inflation can violate desirable

modularity and insulation properties, it must be either prohibited or strictly controlled.
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Figure 2-2: Ticket and Currency Objects. A ticket object contains an amount denominated in
some currency. A currency object contains a name, a list of backing tickets that fund the currency, a list
of all tickets issued in the currency, and an amount that contains the total number of active tickets issued
in the currency.

A key observation is that the desirability of inflation and deflation hinges on trust. Trust

implies permission to appropriate resources without explicit authorization. When trust is

present, explicit ticket transfers are often more cumbersome and restrictive than simple, local

ticket inflation. When trust is absent, misbehaving clients can use inflation to plunder resources.

Distilled into a single principle, ticket inflation and deflation should be allowed only within

logical trust boundaries. The next section introduces a powerful abstraction that can be used

to define trust boundaries and safely exploit ticket inflation.

2.4 Ticket Currencies

A ticket currency is a resource management abstraction that contains the effects of ticket

inflation in a modular way. The basic concept of a ticket is extended to include a currency in

which the ticket is denominated. Since each ticket is denominated in a currency, resource rights

can be expressed in units that are local to each group of mutually trusting clients. A currency

derives its value from backing tickets that are denominated in more primitive currencies. The

tickets that back a currency are said to fund that currency. The value of a currency can be used to

fund other currencies or clients by issuing tickets denominated in that currency. The effects of

inflation are locally contained by effectively maintaining an exchange rate between each local

currency and a common base currency that is conserved. The values of tickets denominated in

different currencies are compared by first converting them into units of the base currency.

Figure 2-2 depicts key aspects of ticket and currency objects. A ticket object consists of

an amount denominated in some currency; the notation amount.currency will be used to refer
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Figure 2-3: Example Currency Graph. Two users compete for computing resources. Alice is
executing two tasks, task1 and task2. Bob is executing a single task, task3. The current values in base
units for these tasks are task1 = 2000, task2 = 1000, and task3 = 2000. In general, currency relationships
may form an acyclic graph instead of a strict hierarchy.

to a ticket. A currency object consists of a unique name, a list of backing tickets that fund the

currency, a list of tickets issued in the currency, and an amount that contains the total number

of active tickets issued in the currency. In addition, each currency should maintain permissions

that determine which clients have the right to create and destroy tickets denominated in that

currency. A variety of well-known schemes can be used to implement permissions [Tan92].

For example, an access control list can be associated with each currency to specify those clients

that have permission to inflate it by creating new tickets.

Currency relationships may form an arbitrary acyclic graph, enabling a wide variety of

different resource management policies. One useful currency configuration is a hierarchy of

currencies. Each currency divides its value into subcurrencies that recursively subdivide and

distribute that value by issuing tickets. Figure 2-3 presents an example currency graph with

a hierarchical tree structure. In addition to the common base currency at the root of the tree,

distinct currencies are associated with each user and task. Two users, Alice and Bob, are

competing for computing resources. The alice currency is backed by 3000 tickets denominated

in the base currency (3000.base), and the bob currency is backed by 2000 tickets denominated

in the base currency (2000.base). Thus, Alice is entitled to 50% more resources than Bob,

since their currencies are funded at a 3 : 2 ratio.
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Alice is executing two tasks, task1 and task2. She subdivides her allocation between these

tasks in a 2 : 1 ratio using tickets denominated in her own currency – 200.alice and 100.alice.

Since a total of 300 tickets are issued in the alice currency, backed by a total of 3000 base

tickets, the exchange rate between the alice and base currencies is 1 : 10. Bob is executing a

single task, task3, and uses his entire allocation to fund it via a single 100.bob ticket. Since a

total of 100 tickets are issued in the bob currency, backed by a total of 2000 base tickets, the

bob : base exchange rate is 1 : 20. If Bob were to create a second task with equal funding by

issuing another 100.bob ticket, this exchange rate would become 1 : 10.

The currency abstraction is useful for flexibly sharing, protecting, and naming resource

rights. Sharing is supported by allowing clients with proper permissions to inflate or deflate a

currency by creating or destroying tickets. For example, a group of mutually trusting clients

can form a currency that pools its collective resource rights in order to simplify resource

management. Protection is guaranteed by maintaining exchange rates that automatically adjust

for intra-currency fluctuations that result from internal inflation or deflation. Currencies also

provide a convenient way to name resource rights at various levels of abstraction. For example,

currencies can be used to name the resource rights allocated to arbitrary collections of threads,

tasks, applications, or users.

Since there is nothing comparable to a currency abstraction in conventional operating

systems, it is instructive to examine similar abstractions that are provided in the domain of

programming languages. Various aspects of currencies can be related to features of object-

oriented systems, including data abstraction, class definitions, and multiple inheritance.

For example, currency abstractions for resource rights resemble data abstractions for data

objects. Data abstractions hide and protect representations by restricting access to an abstract

data type. By default, access is provided only through abstract operations exported by the

data type. The code that implements those abstract operations, however, is free to directly

manipulate the underlying representation of the abstract data type. Thus, an abstraction

barrier is said to exist between the abstract data type and its underlying representation [LG86].

A currency defines a resource management abstraction barrier that provides similar properties

for resource rights. By default, clients are not trusted, and are restricted from interfering with

resource management policies that distribute resource rights within a currency. The clients that

implement a currency’s resource management policy, however, are free to directly manipulate

and redistribute the resource rights associated with that currency.

The use of currencies to structure resource-right relationships also resembles the use of

classes to structure object relationships in object-oriented systems that support multiple inheri-

tance. A class inherits its behavior from a set of superclasses, which are combined and modified

to specify new behaviors for instances of that class. A currency inherits its funding from a set
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of backing tickets, which are combined and then redistributed to specify allocations for tickets

denominated in that currency. However, one difference between currencies and classes is the

relationship among the objects that they instantiate. When a currency issues a new ticket, it

effectively dilutes the value of all existing tickets denominated in that currency. In contrast, the

objects instantiated by a class need not affect one another.

2.5 Example Policies

A wide variety of resource management policies can be specified using the general frame-

work presented in this chapter. This section examines several different resource management

scenarios, and demonstrates how appropriate policies can be specified.

2.5.1 Basic Policies

Unlike priorities which specify absolute precedence constraints, tickets are specifically designed

to specify relative service rates. Thus, the most basic examples of ticket-based resource

management policies are simple service rate specifications. If the total number of tickets in

a system is fixed, then a ticket allocation directly specifies an absolute share of a resource.

For example, a client with 125 tickets in a system with a total of 1000 tickets will receive a

12.5% resource share. Ticket allocations can also be used to specify relative importance. For

example, a client that is twice as important as another is simply given twice as many tickets.

Ticket inflation and deflation provide a convenient way for concurrent clients to implement

resource management policies. For example, cooperative (AND-parallel) clients can indepen-

dently adjust their ticket allocations based upon application-specific estimates of remaining

work. Similarly, competitive (OR-parallel) clients can independently adjust their ticket al-

locations based on application-specific metrics for progress. One concrete example is the

management of concurrent computations that perform heuristic searches. Such computations

typically assign numerical values to summarize the progress made along each search path.

These values can be used directly as ticket assignments, focusing resources on those paths

which are most promising, without starving the exploration of alternative paths.

Tickets can also be used to fund speculative computations that have the potential to accel-

erate a program’s execution, but are not required for correctness. With relatively small ticket

allocations, speculative computations will be scheduled most frequently when there is little

contention for resources. During periods of high resource contention, they will be scheduled

very infrequently. Thus, very low service rate specifications can exploit unused resources while

limiting the impact of speculation on more important computations.
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If desired, tickets can also be used to approximate absolute priority levels. For example, a

series of currencies � � , ��� , � � � , ��� can be defined such that currency ��� has 100 times the funding

of currency ����� � . A client with emulated priority level
	

is allocated a single ticket denominated

in currency ��� . Clients at priority level
	

will be serviced 100 times more frequently than clients

at level
	�
�

, approximating a strict priority ordering.

2.5.2 Administrative Policies

For long-running computations such as those found in engineering and scientific environments,

there is a need to regulate the consumption of computing resources that are shared among users

and applications of varying importance [Hel93]. Currencies can be used to isolate the policies

of projects, users, and applications from one another, and relative funding levels can be used to

specify importance.

For example, a system administrator can allocate ticket levels to different groups based

on criteria such as project importance, resource needs, or real monetary funding. Groups

can subdivide their allocations among users based upon need or status within the group; an

egalitarian approach would give each user an equal allocation. Users can directly allocate their

own resource rights to applications based upon factors such as relative importance or impending

deadlines. Since currency relationships need not follow a strict hierarchy, users may belong to

multiple groups. It is also possible for one group to subsidize another. For example, if group�
is waiting for results from group � , it can issue a ticket denominated in currency

�
, and use

it to fund group � .

2.5.3 Interactive Application Policies

For interactive computations such as databases and media-based applications, programmers

and users need the ability to rapidly focus resources on those tasks that are currently important.

In fact, research in computer-human interaction has demonstrated that responsiveness is often

the most significant factor in determining user productivity [DJ90].

Many interactive systems, such as databases and the World Wide Web, are structured

using a client-server framework. Servers process requests from a wide variety of clients that

may demand different levels of service. Some requests may be inherently more important

or time-critical than others. Users may also vary in importance or willingness to pay a

monetary premium for better service. In such scenarios, ticket allocations can be used to

specify importance, and ticket transfers can be used to allow servers to compute using the

resource rights of requesting clients.
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Another scenario that is becoming increasingly common is the need to control the quality of

service when two or more video viewers are displayed [CT94]. Adaptive viewers are capable

of dynamically altering image resolution and frame rates to match current resource availability.

Coupled with dynamic ticket inflation, adaptive viewers permit users to selectively improve

the quality of those video streams to which they are currently paying the most attention. For

example, a graphical control associated with each viewer could be manipulated to smoothly

improve or degrade a viewer’s quality of service by inflating or deflating its ticket allocation.

Alternatively, a preset number of tickets could be associated with the window that owns the

current input focus. Dynamic ticket transfers make it possible to shift resources as the focus

changes, e.g., in response to mouse movements. With an input device capable of tracking eye

movements, a similar technique could even be used to automatically adjust the performance of

applications based upon the user’s visual focal point.

In addition to user-directed control over resource management, programmatic application-

level control can also be used to improve responsiveness despite resource limitations [DJ90,

TL93]. For example, a graphics-intensive program could devote a large share of its processing

resources to a rendering operation until it has displayed a crude but usable outline or wire-

frame. The share of resources devoted to rendering could then be reduced via ticket deflation,

allowing a more polished image to be computed while most resources are devoted to improving

the responsiveness of more critical operations.
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Chapter 3

Proportional-Share Mechanisms

This chapter presents mechanisms that can be used to efficiently implement the resource

management framework described in Chapter 2. Several novel scheduling algorithms are

introduced, including both randomized and deterministic techniques that provide proportional-

share control over time-shared resources. The algorithms are presented in the order that

they were developed, followed by a discussion of their application to the general resource

management framework.

One common theme is the desire to achieve proportional sharing with a high degree of

accuracy. The throughput accuracy of a proportional-share scheduler can be characterized

by measuring the difference between the specified and actual number of allocations that a

client receives during a series of allocations. If a client has � tickets in a system with a total

of � tickets, then its specified allocation after ��� consecutive allocations is �������	� . Due to

quantization, it is typically impossible to achieve this ideal exactly. A client’s absolute error

is defined as the absolute value of the difference between its specified and actual number of

allocations. The pairwise relative error between clients � � and ��
 is defined as the absolute

error for the subsystem containing only � � and ��
 , where ���� ������
 , and ��� is the total number

of allocations received by both clients.

Another key issue is the challenge of providing efficient, systematic support for dynamic

operations, such as modifications to ticket allocations, and changes in the number of clients

competing for a resource. Support for fast dynamic operations is also required for low-overhead

implementations of higher-level abstractions such as ticket transfers, ticket inflation, and ticket

currencies. Many proportional-share mechanisms that are perfectly reasonable for static envi-

ronments exhibit ad-hoc behavior or unacceptable performance in dynamic environments.

After initial experimentation with a variety of different techniques, I discovered that ran-

domization could be exploited to avoid most of the complexity associated with dynamic op-

erations. This realization led to the development of lottery scheduling, a new randomized
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resource allocation mechanism [WW94]. Lottery scheduling performs an allocation by hold-

ing a lottery; the resource is granted to the client with the winning ticket. Due to its inherent use

of randomization, a client’s expected relative error and expected absolute error under lottery

scheduling are both ����� ����� . Thus, lottery scheduling can exhibit substantial variability over

small numbers of allocations. Attempts to limit this variability resulted in an investigation of

multi-winner lottery scheduling, a hybrid technique with both randomized and deterministic

components.

A desire for even more predictable behavior over shorter time scales prompted a renewed

effort to develop a deterministic algorithm with efficient support for dynamic operations.

Optimization of an inefficient algorithm that I originally developed before the conception of

lottery scheduling resulted in stride scheduling [WW95]. Stride scheduling is a deterministic

algorithm that computes a representation of the time interval, or stride, that each client must

wait between successive allocations. Under stride scheduling, the relative error for any pair of

clients is never greater than one, independent of ��� . However, for skewed ticket distributions

it is still possible for a client to have �������	� absolute error, where �
� is the number of clients.

I later discovered that the core allocation algorithm used in stride scheduling is nearly iden-

tical to elements of rate-based flow-control algorithms designed for packet-switched networks

[DKS90, Zha91, ZK91, PG93]. Thus, stride scheduling can be viewed as a cross-application

of these networking algorithms to schedule other resources such as processor time. However,

the original network-oriented algorithms did not address the issue of dynamic operations, such

as changes to ticket allocations. Since these operations are extremely important in domains

such as processor scheduling, I developed new techniques to efficiently support them. These

techniques can also be used to support frequent changes in bandwidth allocations for networks.

Finally, dissatisfaction with the schedules produced by stride scheduling for skewed ticket

distributions led to an improved hierarchical stride scheduling algorithm that provides a tighter

������ ����� bound on each client’s absolute error. Hierarchical stride scheduling is a novel

recursive application of the basic technique that achieves better throughput accuracy than

previous schemes, and can reduce response-time variability for some workloads.

The remainder of this chapter presents lottery scheduling, multi-winner lottery scheduling,

stride scheduling, and hierarchical stride scheduling. Each mechanism is described in a separate

section that begins with a description of the basic algorithm, followed by a discussion of

extensions that support dynamic operations and irregular quantum sizes. Source code and

examples are included to illustrate each mechanism. The chapter concludes by demonstrating

that each presented mechanism is capable of serving as a substrate for the general resource

management framework presented in Chapter 2. Detailed simulation results, performance

analyses, and comparisons of the mechanisms are presented in Chapter 4.
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3.1 Lottery Scheduling

Lottery scheduling is a randomized resource allocation mechanism for time-shared resources.

Each allocation is determined by holding a lottery that randomly selects a winning ticket from

the set of all tickets competing for a resource. The resource is granted to the client that holds

the winning ticket. This simple operation effectively allocates resources to competing clients

in proportion to the number of tickets that they hold. This section first presents the basic

lottery scheduling algorithm, and then introduces extensions that support dynamic operations

and nonuniform quanta.

3.1.1 Basic Algorithm

The core lottery scheduling idea is to randomly select a ticket from the set of all tickets

competing for a resource. Since each ticket has an equal probability of being selected, the

probability that a particular client will be selected is directly proportional to the number of

tickets that it has been assigned.

In general, there are �
� clients competing for a resource, and each client � � has � � tickets.

Thus, there are a total of � ��� ������ � � � tickets competing for the resource. The probability � �
that client ��� will win a particular lottery is simply � � �	� . After ��� identical allocations, the

expected number of wins � � for client ��� is �
	�� �� � ����� � , with variance � ���� � ����� ��� � 
 � � � .
Thus, the expected allocation of resources to clients is proportional to the number of tickets

that they hold. Since the scheduling algorithm is randomized, the actual allocated proportions

are not guaranteed to match the expected proportions exactly. However, the disparity between

them decreases as the number of allocations increases. More precisely, a client’s expected

relative error and expected absolute error are both ���	� ����� . Since error increases slowly with

� � , accuracy steadily improves when error is measured as a percentage of � � .
One straightforward way to implement a lottery scheduler is to randomly select a winning

ticket, and then search a list of clients to locate the client holding that ticket. Figure 3-1 presents

an example list-based lottery. Five clients are competing for a resource with a total of 20 tickets.

The thirteenth ticket is randomly chosen, and the client list is searched to determine the client

holding the winning ticket. In this example, the third client is the winner, since its region of

the ticket space contains the winning ticket.

Figure 3-2 lists ANSI C code for a basic list-based lottery scheduler. For simplicity, it is

assumed that the set of clients is static, and that client ticket assignments are fixed. These

restrictions will be relaxed in subsequent sections to permit more dynamic behavior. Each

client must be initialized via client init() before any allocations are performed by allocate().

The allocate() operation begins by calling fast random() to generate a uniformly-distributed
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Figure 3-1: Example List-Based Lottery. Five clients compete in a list-based lottery with a total
of 20 tickets. The thirteenth ticket is randomly selected, and the client list is searched for the winner. In
this example, the third client is the winner.

/* per-client state */
typedef struct �
�����
int tickets;�
*client t;

/* current resource owner */
client t current;

/* list of clients competing for resource */
list t list;

/* global ticket sum */
int global tickets = 0;

/* initialize client with specified allocation */
void client init(client t c, int tickets)
�

/* initialize client state, update global sum */
c->tickets = tickets;
global tickets += tickets;

/* join competition for resource */
list insert(list, c);�

/* proportional-share resource allocation */
void allocate()
�
int winner, sum;
client t c;

/* randomly select winning ticket */
winner = fast random() % global_tickets;

/* search list to find client with winning ticket */
sum = 0;
for (c = list first(list);

c != NULL;
c = list next(list, c))

�
/* update running sum, stop at winner */
sum += c->tickets;
if (sum > winner)
break;�

/* grant resource to winner for quantum */
current = c;
use resource(current);�

Figure 3-2: List-Based Lottery Scheduling Algorithm. ANSI C code for scheduling a static set
of clients using a list-based lottery. An allocation requires ���	��
� time to search the list of clients for the
winning ticket. A simple doubly-linked list can be used to implement constant-time list operations.
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pseudo-random integer. Numerous techniques exist for generating random numbers. For

example, the Park-Miller generator efficiently produces high-quality random numbers that are

uniformly distributed between � and ���
� 
 �

[PM88, Car90]. The random number produced

by fast random() is then scaled
�

to reside in the interval [ � , global tickets

 �

], which will be

referred to as the ticket space. The scaled random number, winner, represents the offset of the

winning ticket in the ticket space. The ticket space is then scanned by traversing the client list,

accumulating a running ticket sum until the winning offset is reached. The client holding the

ticket at the winning offset is selected as the winner.

Performing an allocation using the simple list-based lottery algorithm in Figure 3-2 requires

������� � time to traverse the list of clients. Various optimizations can reduce the average number

of clients that must be examined. For example, if the distribution of tickets to clients is uneven,

ordering the clients by decreasing ticket counts can substantially reduce the average search

length. Since those clients with the largest number of tickets will be selected most frequently,

a simple “move-to-front” heuristic can also be very effective.

For large ��� , a tree-based implementation is more efficient, requiring only ��� � � � ��� opera-

tions to perform an allocation. A tree-based implementation would also be more appropriate for

a distributed lottery scheduler. Figure 3-3 lists ANSI C code for a tree-based lottery scheduling

algorithm. Although many tree-based data structures are possible, a balanced binary tree is used

to illustrate the algorithm. Every node has the usual tree links to its parent, left child, and right

child, as well as a ticket count. Each leaf node represents an individual client. Each internal

node represents the group of clients (leaf nodes) that it covers, and contains their aggregate

ticket sum. An allocation is performed by tracing a path from the root of the tree to a leaf. At

each level, the child that covers the region of the ticket space which contains the winning ticket

is followed. When a leaf node is reached, it is selected as the winning client.

Figure 3-4 illustrates an example tree-based lottery. Eight clients are competing for a

resource with a total of 48 tickets. The twenty-fifth ticket is randomly chosen, and a root-to-

leaf path is traversed to locate the winning client. Since the winning offset does not appear in

the region of the ticket space covered by the root’s left child, its right child is followed. The

winning offset is adjusted from 25 to 15 to reflect the new subregion of the ticket space that

excludes the first ten tickets. At this second level, the adjusted offset of 15 falls within the left

child’s region of the ticket space. Finally, its right child is followed, with an adjusted winning

offset of 3. Since this node is a leaf, it is selected as the winning client.

�

An exact scaling method would convert the random number from an integer to a floating-point number
between � and � , multiply it by global tickets, and then convert the result back to the nearest integer. A more
efficient scaling method, used in Figure 3-2, is to simply compute the remainder of the random number modulo
global tickets. This method works extremely well under the reasonable assumption that global tickets ���
	

�

.
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/* binary tree node */
typedef struct �
�����
struct node *left, *right, *parent;
int tickets;�
*node t;

/* current resource owner */
node t current;

/* tree of clients competing for resource */
node t root;

/* initialize client with specified allocation */
void client init(node t c, int tickets)
�
node t n;

/* attach client to tree as leaf */
tree insert(root, c);

/* initialize client state, update ancestor ticket sums */
c->tickets = tickets;
for (n = c->parent;

n != NULL;
n = n->parent)

n->tickets += tickets;�

/* proportional-share resource allocation */
void allocate()
�
int winner;
node t n;

/* randomly select winning ticket */
winner = fast random() % root->tickets;

/* traverse root-to-leaf path to find winner */
for (n = root; !node is leaf(n); )
if (n->left != NULL &&

n->left->tickets > winner)
n = n->left;

else
�

/* adjust relative offset for winner */
n = n->right;
winner -= n->left->tickets;�

/* use resource */
current = n;
use resource(current);�

Figure 3-3: Tree-Based Lottery Scheduling Algorithm. ANSI C code for scheduling a static
set of clients using a tree-based lottery. The main data structure is a binary tree of nodes. Each node
represents either a client (leaf) or a group of clients and their aggregate ticket sum (internal node). An
allocation requires � ����� � 
� time to locate the winning ticket.
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Figure 3-4: Example Tree-Based Lottery. Eight clients compete in a tree-based lottery with a total
of 48 tickets. Each square leaf node represents a client and its associated ticket allocation. Each round
internal node contains the ticket sum for the leaves that it covers. In this example, the winning ticket
number is 25, and the winning client is found by traversing the root-to-leaf path indicated by the arrows.

3.1.2 Dynamic Operations

The basic algorithms presented in Figures 3-2 and 3-3 do not support dynamic operations,

such as changes in the number of clients competing for a resource, and modifications to client

ticket allocations. Fortunately, the use of randomization makes adding such support trivial.

Since each random allocation is independent, there is no per-client state to update in response to

dynamic changes. Because lottery scheduling is effectively stateless, a great deal of complexity

is eliminated. For each allocation, every client is given a fair chance of winning proportional

to its share of the total number of tickets. Any dynamic changes are immediately reflected in

the next allocation decision, and no special actions are required.

Figure 3-5 lists ANSI C code that trivially extends the basic list-based algorithm to effi-

ciently handle dynamic changes. The time complexity of the client modify(), client leave(),

and client join() operations is ��� � � . Figure 3-6 lists the corresponding extensions for the

basic tree-based algorithm. These operations require ��� � � � ��� time to update the ticket sums

for each of a client’s ancestors. The list-based client modify() operation and the tree-based

node modify() operation update global scheduling state only for clients that are actively com-

peting for resources. �

�

The client is active() predicate can be implemented simply by associating an explicit active flag with each
client. This flag should be set in client join() and reset in client leave(). An alternative implementation of
client is active() could simply check if the client’s list-link fields are NULL. Similar approaches can be employed
to define the node is active() predicate used in the tree-based implementation of node modify().
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/* dynamically modify client allocation by delta tickets */
void client modify(client t c, int delta)
�

/* update client tickets */
c->tickets += delta;

/* update global ticket sum if active */
if (client is active(c))
global tickets += delta;�

/* join competition for resource */
void client join(client t c)
�

/* update global ticket sum, link into list */
global tickets += c->tickets;
list insert(list, c);�

/* leave competition for resource */
void client leave(client t c)
�

/* update global ticket sum, unlink from list */
global tickets -= c->tickets;
list remove(list, c);�

Figure 3-5: Dynamic Operations: List-Based Lottery. ANSI C code to support dynamic
operations for a list-based lottery scheduler. All operations execute in constant time.

/* dynamically modify node allocation by delta tickets */
void node modify(node t node, int delta)
�
node t n;

/* update node tickets */
node->tickets += delta;

/* propagate changes to ancestors if active */
if (node is active(node))
for (n = node->parent;

n != NULL;
n = n->parent)

n->tickets += delta;�

/* join competition for resource */
void client join(node t c)
�

/* add node to tree, update ticket sums */
tree insert(root, c);
node modify(c->parent, c->tickets);�

/* leave competition for resource */
void client leave(node t c)
�

/* update ticket sums, remove node from tree */
node modify(c->parent, - c->tickets);
tree remove(root, c);�

Figure 3-6: Dynamic Operations: Tree-Based Lottery. ANSI C code to support dynamic
operations for a tree-based lottery scheduler. All operations require � ����� ��
�� time to update ticket sums.
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3.1.3 Nonuniform Quanta

With the basic lottery scheduling algorithms presented in Figures 3-2 and 3-3, a client that does

not consume its entire allocated quantum will receive less than its entitled share. Similarly,

it may be possible for a client’s usage to exceed a standard quantum in some situations. For

example, under a non-preemptive scheduler, the amount of time that clients hold a resource can

vary considerably.

Fractional and variable-size quanta are handled by adjusting a client’s ticket allocation to

compensate for its nonuniform quantum usage. When a client consumes a fraction
�

of its

allocated time quantum, it is assigned transient compensation tickets that alter its overall ticket

value by
� � � until the client starts its next quantum. This ensures that a client’s expected

resource consumption, equal to
�

times its per-lottery win probability � , is adjusted by
� � �

to match its allocated share. If
��� �

, then the client will receive positive compensation

tickets, inflating its effective ticket allocation. If
��� �

, then the client will receive negative

compensation tickets, deflating its effective allocation.

To demonstrate that compensation tickets have the desired effect, consider a client that

owns � of the � tickets competing for a resource. Suppose that when the client next wins the

resource lottery, it uses a fraction
�

of its allocated quantum. The client is then assigned ��� � 
 �
transient compensation tickets, changing its overall ticket value to ��� � . These compensation

tickets persist only until the client wins another allocation.

Without any compensation, the client’s expected waiting time until its next allocation would

be � �	� 
 �
quanta. Compensation alters both the client’s ticket allocation and the total number

of tickets competing for the resource. With compensation, the client’s expected waiting time

becomes � � � ��� � 
 � � � � ��� � � 
 �
, which reduces to

� � �	� 
 � . Measured from the start of its

first allocation to the start of its next allocation, the client’s expected resource usage is
�

quanta

over a time period consisting of
� � � � � �	� 
 � � � � � �	� quanta. Thus, the client receives a

resource share of
� � � � � �	� � �����	� , as desired.

Note that no assumptions were made regarding the client’s resource usage during its second

allocation. Compensation tickets produce the correct expected behavior even when
�

varies

dynamically, since the client’s waiting time is immediately adjusted after every allocation. A

malicious client is therefore unable to boost its resource share by varying
�

in an attempt to

“game” the system.

Figure 3-7 lists ANSI C code for compensating a client that uses elapsed resource time units

instead of a standard quantum, measured in the same time units. The per-client scheduling state

is extended to include a new compensate field that contains the current number of compensation

tickets associated with the client. The compensate() operation should be invoked immediately
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/* per-client state */
typedef struct �
�����
int tickets, compensate;�
*client t;

/* standard quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* compensate client for nonuniform quantum usage */
void compensate(client t c, int elapsed)
�
int old, new, net change;

/* compute original allocation */
old = c->tickets - c->compensate;

/* compute current compensation */
new = (old * quantum) / elapsed;
c->compensate = new - old;

/* compute change, modify effective allocation */
net change = new - c->tickets;
client modify(c, net change);�

Figure 3-7: Compensation Ticket Assignment. ANSI C code to compensate a client for consuming
elapsed time units of a resource instead of a standard time slice of quantum time units. This code assumes
a list-based lottery; a tree-based lottery would simply replace the invocation of client modify() with
node modify().

after every allocation; compensate(current, elapsed) should be added to the end of the allocate()

operation. Compensation tickets are transient, and only persist until the client starts its next

quantum. Thus, compensate() initially forgets any previous compensation, and computes a

new client compensation value based on elapsed. The client’s compensate field is updated,

and the overall difference between the previous compensated ticket value and its new one is

computed as net change. Finally, the client’s ticket allocation is dynamically modified via

client modify().

For example, suppose clients
�

and � have each been allocated 400 tickets. Client
�

always consumes its entire quantum, while client � uses only one-fifth of its quantum before

yielding the resource. Since both
�

and � have equal ticket assignments, they are equally

likely to win a lottery when both compete for the same resource. However, client � uses

only
� � � ��� of its allocated time, allowing client

�
to consume five times as much of the

resource, in violation of their 1 : 1 ticket ratio. To remedy this situation, client � is granted 1600

compensation tickets when it yields the resource. When � next competes for the resource, its

total funding will be � � � � � � ��� � � tickets. Thus, on average � will win the resource lottery

five times as often as
�

, each time consuming
� ��� as much of its quantum as

�
, achieving the

desired 1 : 1 allocation ratio.
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3.2 Multi-Winner Lottery Scheduling

Multi-winner lottery scheduling is a generalization of the basic lottery scheduling technique.

Instead of selecting a single winner per lottery, � � winners are selected, and each winner is

granted the use of the resource for one quantum. The set of � � consecutive quanta allocated

by a single multi-winner lottery will be referred to as a superquantum. This section presents

the basic multi-winner lottery algorithm, followed by a discussion of extensions for dynamic

operations and nonuniform quanta.

3.2.1 Basic Algorithm

The multi-winner lottery scheduling algorithm is a hybrid technique with both randomized and

deterministic components. The first winner in a superquantum is selected randomly, and the

remaining � � 
 �
winners are selected deterministically at fixed offsets relative to the first

winner. These offsets appear at regular, equally-spaced intervals in the ticket space [ � , � 
 �
],

where � is the total number of tickets competing for the resource. More formally, the � �
winning offsets are located at ��� � 	����� ���	� 
 � in the ticket space, where � is a random

number and index
	�� 	 �� � � 
� � yields the

	����
winning offset.

Since individual winners within a superquantum are uniformly distributed across the ticket

space, multi-winner lotteries directly implement a form of short-term, proportional-share fair-

ness. Because the spacing between winners is � �	� � tickets, a client with � tickets is determin-

istically guaranteed to receive at least � � � ���� quanta per superquantum. However, there are

no deterministic guarantees for clients with fewer than � � � � tickets.

An appropriate value for � � can be computed by choosing the desired level of deterministic

guarantees. Larger values of � � result in better deterministic approximations to specified

ticket allocations, reducing the effects of random error. Ensuring that a client deterministically

receives at least one quantum per superquantum substantially increases its throughput accuracy

and dramatically reduces its response-time variability. Setting � ��� � � � guarantees that all

clients entitled to at least a fraction
�

of the resource will be selected during each superquantum.

For example, if deterministic guarantees are required for all clients with resource shares of at

least
�
� � ��� , then a value of � ����� should be used.

Figure 3-8 presents an example multi-winner lottery. Five clients compete for a resource

with a total of � � ��� tickets. The thirteenth ticket is randomly chosen, resulting in the

selection of the third client as the first winner. Since � � � � , three additional winners are

selected in the same superquantum, with relative offsets that are multiples of � � � � � tickets.

Note that the first client with 10 tickets is guaranteed to receive 2 out of every 4 quanta, and

the third client with 5 tickets is guaranteed to receive 1 out of every 4 quanta. The choice of
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Figure 3-8: Example Multi-Winner Lottery. Five clients compete in a four-winner lottery with a
total of 20 tickets. The first winner is selected at a randomly-generated offset of 13, and the remaining
winners are selected at relative offsets with a deterministic spacing of 5 tickets.

the client that receives the remaining quantum is effectively determined by the random number

generated for the superquantum.

Although the basic multi-winner lottery mechanism is very simple, the use of a superquan-

tum introduces a few complications. One issue is the ordering of winning clients within a

superquantum. The simplest option is to schedule the clients in the order that they are selected.

However, this can result in the allocation of several consecutive quanta to clients holding a

relatively large number of tickets. While this is desirable in some cases to reduce context-

switching overhead, the reduced interleaving also increases response time variability. Another

straightforward approach with improved interleaving is to schedule the winning clients using

an ordering defined by a fixed or pseudo-random permutation.

Figure 3-9 lists ANSI C code for a list-based multi-winner lottery algorithm that sched-

ules winners within a superquantum using a fixed permuted order. The per-client state and

client init() operation are identical to those listed in Figure 3-2. Additional global state is in-

troduced to handle the scheduling of winners within a superquantum. The intra schedule array

defines a fixed permutation of winners within a superquantum, such that successive winners are

maximally separated from one another in the ticket space. The random offset for the first winner

is maintained by intra first, and the deterministic spacing between winners is maintained by

intra space. The current intra-superquantum winner number is stored by intra count.

The allocate() operation initially checks if a new superquantum should be started by inspect-

ing intra count. When a superquantum is started, a new random winning offset is generated,

and a new deterministic inter-winner spacing is computed. These same values are then used

for all of the allocations within the superquantum. Each allocation determines the next winner
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/* per-client state */
typedef struct �
�����
int tickets;�
*client t;

/* winners per superquantum (e.g. 4) */
const int n winners = 4;

/* current resource owner */
client t current;

/* list of clients competing for resource */
list t list;

/* global ticket sum */
int global tickets = 0;

/* intra-superquantum schedule (e.g. permuted) */
int intra schedule[] = � 0, 2, 1, 3

�
;

int intra first, intra space;
int intra count = 0;

/* locate client with winning offset */
client t find winner(int winner)
�
int sum = 0;
client t c;

/* search list to find client with winning offset */
for (c = list first(list);

c != NULL;
c = list next(list, c))

�
/* update running sum, stop at winner */
sum += c->tickets;
if (sum > winner)
return(c);�

�

/* initialize client with specified allocation */
void client init(client t c, int tickets)
�

/* initialize client state, update global sum */
c->tickets = tickets;
global tickets += tickets;

/* join competition for resource */
list insert(list, c);�

/* proportional-share resource allocation */
void allocate()
�
int winner;

/* handle new superquantum */
if (intra count == 0)
�

/* generate random offset, inter-winner spacing */
intra first =
fast random() % global tickets;

intra space = global tickets / n winners;�

/* select next winner within superquantum */
winner = intra first +
intra space * intra schedule[intra count];

/* handle ticket-space wrap-around */
if (winner >= global tickets)
winner -= global tickets;

/* advance intra-superquantum winner count */
if (++intra count == n winners)
intra count = 0;

/* grant resource to winner for quantum */
current = find winner(winner);
use resource(current);�

Figure 3-9: Multi-Winner Lottery Scheduling Algorithm. ANSI C code for scheduling a static
set of clients using a list-based multi-winner lottery. An allocation requires ���	� 
� time to search the
list of clients for the winning ticket.
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by computing its offset within the ticket space. This winning offset is the sum of the initial

random offset, intra first, and a deterministic offset based on the relative position of the next

winner, intra space � intra sched[intra count]. Thus, successive winners within the same su-

perquantum are separated by some multiple of intra space tickets. The implementation of the

find winner() operation is identical to the linear search used in Figure 3-2, and is presented as

a separate abstraction to highlight the key changes to allocate().

A more efficient version of the code listed in Figure 3-9 can be implemented by selecting all

of the superquantum winners during a single scan of the client list. By avoiding a separate pass

for each allocation, this optimization would also decrease the cost of performing an allocation

by nearly a factor of � � over ordinary lottery scheduling. The implementation of a tree-based

multi-winner lottery would also be very similar to the list-based code. The find winner()

function can simply be changed to use the tree-based search employed in Figure 3-3, and

references to global tickets can be replaced by the root node’s tickets field.

The multi-winner lottery algorithm is very similar to the stochastic remainder technique

used in the field of genetic algorithms for randomized population mating and selection [Gol89].

This technique can also be applied to scheduling time-shared resources, although it was not

designed for that purpose. Using the same scheduling terminology introduced earlier, for

each superquantum consisting of � � consecutive quanta, the stochastic remainder technique

allocates each client � � �� quanta, where � is the number of tickets held by that client, and

� is the total number of tickets held by all clients. The integer part of this expression is

deterministically allocated, and the fractional remainder is stochastically allocated by lottery.

For example, consider a superquantum with � � � �
� , and two clients,

�
and � , with a 2 : 1

ticket allocation ratio. Client
�

receives � � ��� �
�
� � � quanta, and � receives � � ��� �

�
� ���

quanta. Thus,
�

is deterministically guaranteed to receive six quanta out of every ten; � is

guaranteed to receive three quanta out of every ten. The remaining quantum is allocated by

lottery with probability � � ��� �
�
� 
 � � �

�
to client

�
, and � � ��� �

�
� 
 � � �

�
to client � .

The multi-winner lottery algorithm and the stochastic remainder technique both provide

the same deterministic guarantee: a client with � tickets will receive at least � � � �� � quanta per

superquantum. The remaining quanta are allocated stochastically. The stochastic remainder

approach uses independent random numbers to perform these allocations, while a multi-winner

lottery bases its allocations on a single random number. A multi-winner lottery evenly divides

the ticket space into regions, and selects a winner from each region by lottery. This distinc-

tion provides several implementation advantages. For example, fewer random numbers are

generated; the same random number is effectively reused within a superquantum. Also, fewer

expensive arithmetic operations are required. In addition, if � � is chosen to be a power of two,

then all divisions can be replaced with efficient shift operations.
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/* dynamically modify client allocation by delta tickets */
void client modify(client t c, int delta)
�

/* update client tickets */
c->tickets += delta;

/* adjust global state if active */
if (client is active(c))
�

/* force start of new superquantum */
intra count = 0;

/* update global ticket sum */
global tickets += delta;�

�

/* join competition for resource */
void client join(client t c)
�

/* force start of new superquantum */
intra count = 0;

/* update global ticket sum, link into list */
global tickets += c->tickets;
list insert(list, c);�

/* leave competition for resource */
void client leave(client t c)
�

/* force start of new superquantum */
intra count = 0;

/* update global ticket sum, unlink from list */
global tickets -= c->tickets;
list remove(list, c);�

Figure 3-10: Dynamic Operations: Multi-Winner Lottery. ANSI C code to support dy-
namic operations for a list-based multi-winner lottery scheduler. Each operation terminates the current
superquantum. All operations execute in constant time.

3.2.2 Dynamic Operations

The use of a superquantum also complicates operations that dynamically modify the set

of competing clients or their relative ticket allocations. For a single-winner lottery, each

allocation is independent, and there is no state that must be transformed in response to dynamic

changes. For a multi-winner lottery, the current state of the intra-superquantum schedule must

be considered.

Randomization can be used to once again sidestep the complexities of dynamic modifi-

cations, by scheduling winners within a superquantum in a pseudo-random order. After any

dynamic change, the current superquantum is simply prematurely terminated and a new su-

perquantum is started. This same technique can also be used with an intra-superquantum

schedule based on a fixed permutation, such as the one listed in Figure 3-9. Since winners

are maximally separated in the ticket space, premature termination of a superquantum after

� winners have been selected approximates the behavior exhibited by a multi-winner lottery

scheduler with � � � � . For example, the first two winners scheduled by the four-winner

lottery listed in Figure 3-9 are identical to the winners that would be selected by a two-winner

lottery. When � � and � are perfect powers of two, this approximation will be exact. In other
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cases, the use of a randomly-generated initial offset still ensures that no systematic bias will

develop across superquanta. This is important, because systematic bias could potentially be

exploited by clients attempting to cheat the system.

Figure 3-10 lists ANSI C code that trivially extends the basic multi-winner lottery algorithm

to handle dynamic changes. The premature termination of a superquantum allows dynamic

operations to be supported in a principled manner. However, if dynamic changes occur with high

frequency, then the effective superquantum size will be reduced, weakening the deterministic

guarantees that it was intended to provide. In the extreme case where a dynamic change

occurs after every allocation, this scheme reduces to an ordinary single-winner lottery. I

was unable to find other systematic dynamic techniques that work with alternative ordering

schemes. In general, the use of a superquantum introduces state that may require complicated

transformations to avoid incorrect dynamic behavior.

3.2.3 Nonuniform Quanta

Fractional and variable-size quanta are supported by the same compensation ticket technique

described for ordinary lottery scheduling. The code presented for assigning compensation

tickets in Figure 3-7 can be used without modification. However, for multi-winner lotteries,

the assignment of compensation tickets forces the start of a new superquantum, since the

multi-winner version of client modify() terminates the current superquantum. Thus, if clients

frequently use nonuniform quantum sizes, the effective superquantum size will be reduced,

weakening the deterministic guarantees provided by the multi-winner lottery.

The need to start a new superquantum after every nonuniform quantum can be avoided by

using a more complex compensation scheme. Instead of invoking compensate() after every

allocation, compensation tickets can be assigned after each complete superquantum. This

approach requires keeping track of each winner’s cumulative allocation count and resource

usage over the entire superquantum to determine appropriate compensation values.

3.3 Deterministic Stride Scheduling

Stride scheduling is a deterministic allocation mechanism for time-shared resources. Stride

scheduling implements proportional-share control over processor-time and other resources by

cross-applying and generalizing elements of rate-based flow control algorithms designed for

networks [DKS90, Zha91, ZK91, PG93]. New techniques are introduced to efficiently support

dynamic operations, such as modifications to ticket allocations, and changes to the number of

clients competing for a resource.
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/* per-client state */
typedef struct �
�����
int tickets, stride, pass;�
*client t;

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* queue of clients competing for resource */
queue t queue;

/* initialize client with specified allocation */
void client init(client t c, int tickets)
�

/* stride is inverse of tickets */
c->tickets = tickets;
c->stride = stride1 / tickets;
c->pass = c->stride;

/* join competition for resource */
queue insert(queue, c);�

/* proportional-share resource allocation */
void allocate()
�

/* select client with minimum pass value */
current = queue remove min(queue);

/* use resource for quantum */
use resource(current);

/* compute next pass using stride */
current->pass += current->stride;
queue insert(queue, current);�

Figure 3-11: Basic Stride Scheduling Algorithm. ANSI C code for scheduling a static set of
clients. Queue manipulations can be performed in ������� � 
� time by using an appropriate data structure.

3.3.1 Basic Algorithm

The core stride scheduling idea is to compute a representation of the time interval, or stride,

that a client must wait between successive allocations. The client with the smallest stride will

be scheduled most frequently. A client with half the stride of another will execute twice as

quickly; a client with double the stride of another will execute twice as slowly. Strides are

represented in virtual time units called passes, instead of units of real time such as seconds.

Three state variables are associated with each client: tickets, stride, and pass. The tickets

field specifies the client’s resource allocation, relative to other clients. The stride field is

inversely proportional to tickets, and represents the interval between selections, measured in

passes. The pass field represents the virtual time index for the client’s next selection. Performing

a resource allocation is very simple: the client with the minimum pass is selected, and its pass

is advanced by its stride. If more than one client has the same minimum pass value, then any

of them may be selected. A reasonable deterministic approach is to use a consistent ordering

to break ties, such as one defined by unique client identifiers.
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The only source of relative error under stride scheduling is due to quantization. Thus, the

the relative error for any pair of clients is never greater than one, independent of � � . However,

for skewed ticket distributions it is still possible for a client to have ����� �	� absolute error, where

��� is the number of clients. Nevertheless, stride scheduling is considerably more accurate than

lottery scheduling, since its error does not grow with the number of allocations.

Figure 3-11 lists ANSI C code for the basic stride scheduling algorithm. For simplicity, a

static set of clients with fixed ticket assignments is assumed. These restrictions will be relaxed

in subsequent sections to permit more dynamic behavior. The stride scheduling state for each

client must be initialized via client init() before any allocations are performed by allocate().

To accurately represent stride as the reciprocal of tickets, a floating-point representation could

be used. A more efficient alternative is presented that uses a high-precision fixed-point integer

representation. This is easily implemented by multiplying the inverted ticket value by a large

integer constant. This constant will be referred to as stride � , since it represents the stride

corresponding to the minimum ticket allocation of one. �
The cost of performing an allocation depends on the data structure used to implement the

client queue. A priority queue can be used to implement queue remove min() and other queue

operations in ������ ����� time or better, where �
� is the number of clients [CLR90, Tho95]. A skip

list could also provide expected ������ �
��� time queue operations with low constant overhead

[Pug90]. For small ��� or heavily skewed ticket distributions, a simple sorted list is likely to be

most efficient in practice.

Figure 3-12 illustrates an example of stride scheduling. Three clients,
�

, � , and � , are

competing for a time-shared resource with a 3 : 2 : 1 ticket ratio. For simplicity, a convenient

stride � = 6 is used instead of a large number, yielding respective strides of 2, 3, and 6. The

pass value of each client is plotted as a function of time. For each quantum, the client with the

minimum pass value is selected, and its pass is advanced by its stride. Ties are broken using

the arbitrary but consistent client ordering
�

, � , � . The sequence of allocations produced by

stride scheduling in Figure 3-12 exhibits precise periodic behavior:
�

, � ,
�

,
�

, � , � .

3.3.2 Dynamic Operations

The basic stride scheduling algorithm presented in Figure 3-11 does not support dynamic

changes in the number of clients competing for a resource. When clients are allowed to join

and leave at any time, their state must be appropriately modified. Figure 3-13 extends the basic

algorithm to efficiently handle dynamic changes to the set of active clients. The code listed in

Figure 3-13 also supports nonuniform quanta; this issue will be discussed in Section 3.3.3.

	 Section 5.2.1 discusses the representation of strides in more detail.
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Figure 3-12: Stride Scheduling Example. Clients � (triangles), � (circles), and � (squares) have
a 3 : 2 : 1 ticket ratio. In this example, stride � = 6, yielding respective strides of 2, 3, and 6. For each
quantum, the client with the minimum pass value is selected, and its pass is advanced by its stride.

A key extension is the addition of global variables that maintain aggregate information

about the set of active clients. The global tickets variable contains the total ticket sum for all

active clients. The global pass variable maintains the “current” pass for the scheduler. The

global pass advances at the rate of global stride per quantum, where global stride = stride � /

global tickets. Conceptually, the global pass continuously advances at a smooth rate. This is

implemented by invoking the global pass update() routine whenever the global pass value is

needed. �

A state variable is also associated with each client to store the remaining portion of its stride

when a dynamic change occurs. The remain field represents the number of passes that are left

before a client’s next selection. When a client leaves the system, remain is computed as the

difference between the client’s pass and the global pass. When a client rejoins the system, its

pass value is recomputed by adding its remain value to the global pass.

This mechanism handles situations involving either positive or negative error between the

specified and actual number of allocations. If remain
�

stride, then the client is effectively

given credit when it rejoins for having previously waited for part of its stride without receiving

�
Due to the use of a fixed-point integer representation for strides, small quantization errors may accumulate

slowly, causing global pass to drift away from client pass values over a long period of time. This is unlikely to be
a practical problem, since client pass values are recomputed using global pass each time they leave and rejoin the
system. However, this problem can be avoided by infrequently resetting global pass to the minimum pass value
for the set of active clients.
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/* per-client state */
typedef struct �
�����
int tickets, stride, pass, remain;�
*client t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* queue of clients competing for resource */
queue t queue;

/* global aggregate tickets, stride, pass */
int global tickets, global stride, global pass;

/* update global pass based on elapsed real time */
void global pass update(void)
�
static int last update = 0;
int elapsed;

/* compute elapsed time, advance last update */
elapsed = time() - last update;
last update += elapsed;

/* advance global pass by quantum-adjusted stride */
global pass +=
(global stride * elapsed) / quantum;�

/* update global tickets and stride to reflect change */
void global tickets update(int delta)
�
global tickets += delta;
global stride = stride1 / global tickets;�

/* initialize client with specified allocation */
void client init(client t c, int tickets)
�

/* stride is inverse of tickets, whole stride remains */
c->tickets = tickets;
c->stride = stride1 / tickets;
c->remain = c->stride;�

/* join competition for resource */
void client join(client t c)
�

/* compute pass for next allocation */
global pass update();
c->pass = global_pass + c->remain;

/* add to queue */
global tickets update(c->tickets);
queue insert(queue, c);�

/* leave competition for resource */
void client leave(client t c)
�

/* compute remainder of current stride */
global pass update();
c->remain = c->pass - global_pass;

/* remove from queue */
global tickets update(-c->tickets);
queue remove(queue, c);�

/* proportional-share resource allocation */
void allocate()
�
int elapsed;

/* select client with minimum pass value */
current = queue remove min(queue);

/* use resource, measuring elapsed real time */
elapsed = use resource(current);

/* compute next pass using quantum-adjusted stride */
current->pass +=
(current->stride * elapsed) / quantum;

queue insert(queue, current);�

Figure 3-13: Dynamic Stride Scheduling Algorithm. ANSI C code for stride scheduling
operations, including support for joining, leaving, and nonuniform quanta. Queue manipulations can be
performed in � ����� � 
�� time by using an appropriate data structure.
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Figure 3-14: Stride Scheduling Allocation Change. Modifying a client’s allocation from tickets
to tickets � requires only a constant-time recomputation of its stride and pass. The new stride � is inversely
proportional to tickets � . The new pass � is determined by scaling remain, the remaining portion of the the
current stride, by stride � / stride.

a quantum. If remain
�

stride, then the client is effectively penalized when it rejoins for having

previously received a quantum without waiting for its entire stride.
�

This approach implicitly

assumes that a partial quantum now is equivalent to a partial quantum later. In general, this

is a reasonable assumption, and resembles the treatment of nonuniform quanta that will be

presented in Section 3.3.3. However, it may not be appropriate if the total number of tickets

competing for a resource varies significantly between the time that a client leaves and rejoins

the system.

The time complexity for both the client leave() and client join() operations is ������ � ��� ,
where ��� is the number of clients. These operations are efficient because the stride scheduling

state associated with distinct clients is completely independent; a change to one client does not

require updates to any other clients. The ��� � � ����� cost results from the need to perform queue

manipulations.

Additional support is needed to dynamically modify client ticket allocations. Figure 3-14

illustrates a dynamic allocation change, and Figure 3-15 lists ANSI C code for dynamically

changing a client’s ticket allocation. When a client’s allocation is dynamically changed from

tickets to tickets
�
, its stride and pass values must be recomputed. The new stride

�
is computed

as usual, inversely proportional to tickets
�
. To compute the new pass

�
, the remaining portion

of the client’s current stride, denoted by remain, is adjusted to reflect the new stride
�
. This is

accomplished by scaling remain by stride
�
/ stride. In Figure 3-14, the client’s ticket allocation

�
Several interesting alternatives could also be implemented. For example, a client could be given credit for

some or all of the passes that elapse while it is inactive.
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/* dynamically modify client ticket allocation by delta tickets */
void client modify(client t c, int delta)
�
int tickets, stride, remain;
bool t active;

/* check if client actively competing for resource */
active = client is active(c);

/* leave queue for resource */
if (active)
client leave(c);

/* compute new tickets, stride */
tickets = c->tickets + delta;
stride = stride1 / tickets;

/* scale remaining passes to reflect change in stride */
remain = (c->remain * stride) / c->stride;

/* update client state */
c->tickets = tickets;
c->stride = stride;
c->remain = remain;

/* rejoin queue for resource */
if (active)
client join(c);�

Figure 3-15: Dynamic Ticket Modification: Stride Scheduling. ANSI C code for dynamic
modifications to client ticket allocations under stride scheduling. The client modify() operation requires
������� � 
�� to perform appropriate queue manipulations.
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is increased, so pass is decreased, compressing the time remaining until the client is next

selected. If its allocation had decreased, then pass would have increased, expanding the time

remaining until the client is next selected.

The client modify() operation requires ��� � � ����� time, where ��� is the number of clients.

As with dynamic changes to the number of clients, ticket allocation changes are efficient

because the stride scheduling state associated with distinct clients is completely independent;

the dominant cost is due to queue manipulations.

3.3.3 Nonuniform Quanta

With the basic stride scheduling algorithm presented in Figure 3-11, a client that does not

consume its entire allocated quantum will receive less than its entitled share of a resource.

Similarly, it may be possible for a client’s usage to exceed a standard quantum in some situations.

For example, under a non-preemptive scheduler, client run lengths can vary considerably.

Fortunately, fractional and variable-size quanta can easily be accommodated. When a client

consumes a fraction
�

of its allocated time quantum, its pass should be advanced by
�
� stride

instead of stride. If
� � �

, then the client’s pass will be increased less, and it will be scheduled

sooner. If
� � �

, then the client’s pass will be increased more, and it will be scheduled later.

The extended code listed in Figure 3-13 supports nonuniform quanta by effectively computing
�

as the elapsed resource usage time divided by a standard quantum in the same time units.

Another extension would permit clients to specify the quantum size that they require.
�

This

could be implemented by associating an additional quantum � field with each client, and scaling

each client’s stride field by quantum � / quantum. Deviations from a client’s specified quantum

would still be handled as described above, with
�

redefined as the elapsed resource usage

divided by the client-specific quantum � .

3.4 Hierarchical Stride Scheduling

Stride scheduling guarantees that the relative throughput error for any pair of clients never

exceeds a single quantum. However, depending on the distribution of tickets to clients, a large

������� � absolute throughput error is still possible, where � � is the number of clients.

For example, consider a set of 101 clients with a 100 : 1 : � � � : 1 ticket allocation. A schedule

that minimizes absolute error and response time variability would alternate the 100-ticket client

with each of the single-ticket clients. However, the standard stride algorithm schedules the

�

Yet another alternative would be to allow each client to specify its scheduling period. Since a client’s period
and quantum are related by its relative resource share, specifying one quantity yields the other.
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clients in order, with the 100-ticket client receiving 100 quanta before any other client receives

a single quantum. Thus, after 100 allocations, the intended allocation for the 100-ticket client

is 50, while its actual allocation is 100, yielding a large absolute error of 50 quanta. Similar

rate-based flow control algorithms designed for networks [DKS90, Zha91, ZK91, PG93] also

exhibit this undesirable behavior.

This section describes a novel hierarchical variant of stride scheduling that limits the

absolute throughput error of any client to ������ ����� quanta. For the 101-client example described

above, hierarchical stride scheduler simulations produced a maximum absolute error of only 4.5.

The hierarchical algorithm also significantly reduces response time variability by aggregating

clients to improve interleaving. Since it is common for systems to consist of a small number

of high-throughput clients together with a large number of low-throughput clients, hierarchical

stride scheduling represents a practical improvement over previous work.

3.4.1 Basic Algorithm

Hierarchical stride scheduling is essentially a recursive application of the basic stride

scheduling algorithm. Individual clients are combined into groups with larger aggregate ticket

allocations, and correspondingly smaller strides. An allocation is performed by invoking the

normal stride scheduling algorithm first among groups, and then among individual clients

within groups.

Although many different groupings are possible, a balanced binary tree of groups is consid-

ered. Each leaf node represents an individual client. Each internal node represents the group

of clients (leaf nodes) that it covers, and contains their aggregate ticket, stride, and pass values.

Thus, for an internal node, tickets is the total ticket sum for all of the clients that it covers, and

stride = stride � / tickets. The pass value for an internal node is updated whenever the pass value

for any of the clients that it covers is modified.

Figure 3-16 presents ANSI C code for the basic hierarchical stride scheduling algorithm.

This code also supports nonuniform quanta, which will be discussed in Section 3.4.3. Each

node has the normal tickets, stride, and pass scheduling state, as well as the usual tree links

to its parent, left child, and right child. An allocation is performed by tracing a path from

the root of the tree to a leaf, choosing the child with the smaller pass value at each level via

node choose child(). Once the selected client has finished using the resource, its pass value is

updated to reflect its usage. The client update is identical to that used in the dynamic stride

algorithm that supports nonuniform quanta, listed in Figure 3-13. However, the hierarchical

scheduler requires additional updates to each of the client’s ancestors, following the leaf-to-root

path formed by successive parent links.
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/* binary tree node */
typedef struct node �
�����
struct node *left, *right, *parent;
int tickets, stride, pass;�
*node t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
node t current;

/* tree of clients competing for resource */
node t root;

/* select child of internal node to follow */
node t node choose child(node t n)
�

/* no choice if only one child */
if (n->left == NULL)
return(n->right);

if (n->right == NULL)
return(n->left);

/* choose child with smaller pass */
if (n->left->pass < n->right->pass)
return(n->left);

else
return(n->right);�

/* proportional-share resource allocation */
void allocate()
�
int elapsed;
node t n;

/* traverse root-to-leaf path following min pass */
for (n = root; !node is leaf(n); )
n = node choose child(n);

/* use resource, measuring elapsed real time */
current = n;
elapsed = use_resource(current);

/* update pass for each ancestor using its stride */
for (n = current; n != NULL; n = n->parent)
n->pass +=
(n->stride * elapsed) / quantum;�

Figure 3-16: Hierarchical Stride Scheduling Algorithm. ANSI C code for hierarchical stride
scheduling with a static set of clients, including support for nonuniform quanta. The main data structure
is a binary tree of nodes. Each node represents either a client (leaf) or a group (internal node) that
summarizes aggregate information.
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/* dynamically modify node allocation by delta tickets */
void node modify(node t n, int delta)
�
int old stride, remain;

/* compute new tickets, stride */
old stride = n->stride;
n->tickets += delta;
n->stride = stride1 / n->tickets;

/* done when reach root */
if (n == root)
return;

/* simply scale stored remain value if inactive */
if (!node is active(n))
�
n->remain = (n->remain * n->stride) / old stride;
return;�

/* scale remaining passes to reflect change in stride */
remain = n->pass - root->pass;
remain = (remain * n->stride) / old stride;
n->pass = root->pass + remain;

/* propagate change to ancestors */
node modify(n->parent, delta);�

Figure 3-17: Dynamic Ticket Modification: Hierarchical Stride Scheduling. ANSI C code
for dynamic modifications to client ticket allocations under hierarchical stride scheduling. A modification
requires ������� � 
�� time to propagate changes.

Each client allocation can be viewed as a series of pairwise allocations among groups of

clients at each level in the tree. The maximum error for each pairwise allocation is 1, and in the

worst case, error can accumulate at each level. Thus, the maximum absolute error for a series

of tree-based allocations is the height of the tree, which is
� � � � ��� , where ��� is the number of

clients. Since the error for a pairwise A : B ratio is minimized when
� � � , absolute error can

be further reduced by carefully choosing client leaf positions to better balance the tree based

on the number of tickets at each node.

3.4.2 Dynamic Operations

Extending the basic hierarchical stride algorithm to support dynamic modifications requires

a careful consideration of the impact that changes have at each level in the tree. Figure 3-17

lists ANSI C code for performing a ticket modification that works for both clients and internal

nodes. Changes to client ticket allocations essentially follow the same scaling and update rules
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used for normal stride scheduling, listed in Figure 3-15. The hierarchical scheduler requires

additional updates to each of the client’s ancestors, following the leaf-to-root path formed by

successive parent links. Note that the pass value of the root node used in Figure 3-17 effectively

takes the place of the global pass variable used in Figure 3-15; both represent the aggregate

global scheduler pass. �
Operations that allow clients to dynamically join or leave the system must also account

for the effects of changes at each level in the tree. Under hierarchical stride scheduling, the

state of each node that covers a client is partially based on that client’s state. By the time

that a client dynamically leaves the system, it may have accumulated ������ � ��� absolute error.

Without adjustments to compensate for this error, a client that leaves after receiving too few

quanta unfairly increases the allocation granted to other clients in the same subtree. Similarly,

a client that leaves after receiving too many quanta unfairly decreases the allocation granted to

other clients in the same subtree.

A general “undo” and “redo” strategy is used to avoid these problems. Any bias introduced

by a client on its ancestors is eliminated when it leaves the system. When the client rejoins

the system, symmetric adjustments are made to reconstruct the appropriate bias in order to

correctly influence future scheduling decisions.

Figure 3-18 lists ANSI C code that implements support for dynamic client participation. As

with ordinary stride scheduling, an additional remain field is associated with each client to store

the remaining portion of its stride when it leaves the system. If remain
�

stride, then the client

should be credited for quanta that it was entitled to receive. If remain
�

stride, then the client

should be penalized when it rejoins the system for having previously received quanta ahead

of schedule. As mentioned earlier in the context of dynamic stride scheduling, this approach

makes the implicit assumption that a quantum now is equivalent to a quantum later.

When a client leaves the system, remain is computed as the difference between its pass

and the global pass, represented by the pass value of the root node. When the client rejoins

the system, this remain value is used to recompute the client’s pass value. For ordinary stride

scheduling, no other special actions are required, because the scheduling state associated with

distinct clients is completely independent. However, under hierarchical stride scheduling, the

state of each node that covers a client is partially based on that client’s state. When a client

leaves the system via client leave(), any residual impact on its ancestors must be eliminated.

This is implemented by performing a “pseudo-allocation” to erase the effects of client error by

updating the client’s ancestors as if an actual corrective allocation had been given to the client.

�
Changes that do not occur on exact quantum boundaries should first update the root pass value based on

the elapsed real time since its last update. This update would resemble the operation of global pass update() for
ordinary stride scheduling, listed in Figure 3-13.
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/* binary tree node */
typedef struct node �
�����
struct node *left, *right, *parent;
int tickets, stride, pass, remain;�
*node t;

/* standard quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* compute entitled resource time for client */
int client entitled(node_t c)
�
int completed, entitled;

/* compute completed passes */
completed = c->stride - c->remain;

/* convert completed passes into entitled time */
entitled =
(completed * quantum) / c->stride;

return(entitled);�

/* pretend that elapsed time units were allocated to node */
void pseudo allocate(node t node, int elapsed)
�
node t n;

/* update node, propagate changes to ancestors */
for (n = node; n != root; n = n->parent)
n->pass +=
(n->stride * elapsed) / quantum;�

/* join competition for resource */
void client join(node t c)
�

/* add node to tree */
tree insert(root, c)

/* perform update to reflect ticket gain */
node modify(c->parent, c->tickets);

/* ‘‘redo” any existing client error */
pseudo allocate(c->parent,

- client entitled(c));

/* compute pass for next allocation */
c->pass = root->pass + c->remain;�

/* leave competition for resource */
void client leave(node t c)
�

/* compute passes remaining */
c->remain = c->pass - root->pass;

/* ‘‘undo” any existing client error */
pseudo allocate(c->parent,

client entitled(c));

/* perform update to reflect ticket loss */
node modify(c->parent, - c->tickets);

/* remove client from tree */
tree remove(root, c);�

Figure 3-18: Dynamic Client Participation: Hierarchical Stride Scheduling. ANSI C code
to support dynamic client participation under hierarchical stride scheduling. The client join() and
client leave() operations require ������� � 
�� time to propagate updates.
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This pseudo-allocation is intended to correct any outstanding client error, so the quantum

size used for the pseudo-allocation must equal the amount of resource time the client is actually

entitled to receive. This value is determined by client entitled(), which returns a resource

entitlement measured in the same real time units as quantum. A client’s entitlement is based

on the number of passes remaining before it is due to be selected. If the client’s entitlement is

positive, then it is currently owed time by the system; if it is negative, then the client owes time

to the system.

After the pseudo-allocation corrects for any existing client error, node modify() is invoked

to ensure that future updates reflect the overall decrease in tickets due to the client leaving

the system. As with any ticket modification, this change propagates to each of the client’s

ancestors. Finally, a call to tree remove() deactivates the client by removing it from the tree.

When a client rejoins the system via client join(), the inverse operations are performed.

First, tree insert() activates the client by adding it to the tree. Next, node modify() is invoked

to reflect the overall increase in tickets due to the client joining the system. Finally, the client’s

new ancestors are updated to reflect its net entitlement by invoking pseudo allocate(). Note

that the implementation of client join() is completely symmetric to client leave(). As expected,

successive client leave() and client join() operations to the same client leaf position effectively

undo one another.

3.4.3 Nonuniform Quanta

Fractional and variable-size quanta are handled in a manner that is nearly identical to their

treatment under ordinary stride scheduling. The basic hierarchical stride algorithm listed in

Figure 3-16 includes support for nonuniform quanta. When a client uses a fraction
�

of its

allocated quantum, its pass is advanced by
�
� stride instead of stride. The same scaling factor

�
is used when advancing the pass values associated with each of the client’s ancestors during

an allocation.

3.4.4 Huffman Trees

As noted in Section 3.4.1, many different hierarchical groupings of clients are possible. A

height-balanced binary tree permits efficient ��� � � ���	� scheduling operations while achieving a� � � ����� bound on absolute error. An interesting alternative is to construct a tree with Huffman’s

algorithm [Huf52, CLR90], using client ticket values as frequency counts.
�

Huffman encoding

is typically used to find optimal variable-length codes for compressing files or messages.

�

Thanks to Bill Dally for suggesting this approach.
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In the context of hierarchical stride scheduling, a Huffman tree explicitly minimizes the

cost of performing an allocation. The same basic allocation operation presented in Figure 3-16

can also be used with Huffman trees. In a Huffman tree, clients with high ticket values are

located near the root of the tree, while clients with low ticket values end up farther down in

the tree structure. Thus, clients that receive the most allocations require very short root-to-leaf

traversals, and clients that receive allocations infrequently have longer root-to-leaf paths.

The Huffman tree structure also ensures that worst-case absolute error is smallest for the

clients with the largest ticket values, since maximum absolute error is directly related to the

depth of the client in the tree. In Section 4.1.4, it will be demonstrated that response-time

variability also increases with tree depth, so a Huffman tree also minimizes response-time

variability for large clients. However, ��������� absolute error is still possible for small clients,

since the height of the tree may be �����
�	� for highly skewed ticket distributions. Allocations to

small clients may also exhibit high response-time variability for the same reason.

While a height-balanced tree provides uniform performance bounds and identical allocation

costs for all clients, a Huffman tree provides better guarantees and lower allocation costs for

clients with larger ticket values, at the expense of clients with smaller ticket values. A detailed

analysis of the precise effects of various hierarchical structures is an interesting topic for

future research. In addition to bounds on worst-case behavior, more work is needed to better

understand the average-case behavior associated with both height-balanced binary trees and

Huffman trees.

Huffman trees appear to be a good choice for static environments, since the tree structure

remains fixed. However, dynamic operations that modify client ticket values or the set of

active clients present some challenging problems. Although the dynamic operations listed in

Figures 3-17 and 3-18 will correctly implement proportional sharing with Huffman trees, they

do not maintain the invariants that characterize Huffman trees. For example, if a client’s ticket

allocation is changed from a very small to a very large value, numerous node interchanges and

updates are necessary to move the client to a higher location in the tree.

Dynamic Huffman codes have been studied in the context of adaptive compression schemes

for communication channels [Vit87]. Similar techniques may be useful for dynamic manipula-

tions of Huffman trees for hierarchical stride scheduling. However, these techniques commonly

assume that the values of character frequencies (client ticket values in the case of scheduling)

change only incrementally as messages are processed dynamically. Of course, there is no com-

pelling reason that the tree structure used for hierarchical stride scheduling must always remain

a strict Huffman tree. Relaxing this constraint may yield algorithms that provide near-optimal

allocation costs with acceptable overhead for dynamic operations.
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3.5 Framework Implementation

This section explains how the various proportional-share mechanisms presented in this chapter

can be used to implement the general resource management framework described in Chapter 2.

Implementations of ticket transfers, ticket inflation, and ticket currencies are presented in terms

of low-level dynamic operations that have already been defined, such as client modify(). Since

primitive dynamic operations have been described for lottery scheduling, multi-winner lottery

scheduling, stride scheduling, and hierarchical stride scheduling, any of these mechanisms can

be used as a substrate for the general framework.

3.5.1 Tickets

A ticket is a first-class object that abstractly encapsulates relative resource rights. In the

descriptions of the basic mechanisms, all of the tickets associated with a client are compactly

represented by a single integer. A complete resource management framework implementation

is likely to use a more flexible representation, in which tickets are protected system-level objects

that can be explicitly created,destroyed, and transferred between clients and currencies. Despite

the use of a more sophisticated ticket representation, the resource rights currently specified by

a set of tickets can always be converted into a single integer value, expressed in base units.

However, the frequency of such conversions may differ between implementations.

3.5.2 Ticket Transfers

A ticket transfer is an explicit transfer of tickets from one client to another. A transfer of �
tickets from client

�
to client � essentially consists of two dynamic ticket modifications. These

modifications can be implemented by invoking client modify(A,



t) and client modify(B, t).

For lottery scheduling, the client modify() operations simply change the underlying ticket

allocations associated with clients
�

and � , and update appropriate ticket sums. Under multi-

winner lottery scheduling, a ticket transfer also terminates the current superquantum. When�
transfers tickets to � under stride scheduling,

�
’s stride and pass will increase, while � ’s

stride and pass will decrease. A slight complication arises for complete ticket transfers; i.e.,

when
�

transfers its entire ticket allocation to � . In this case,
�

’s adjusted ticket value is zero,

leading to an adjusted stride of infinity (division by zero). This problem can be circumvented

by treating a complete transfer from
�

to � as an update of client � via client modify(B,

A.tickets), and a suspension of client
�

via client leave(A). This effectively stores
�

’s remain

value at the time of the transfer, and defers the computation of its stride and pass values until it

once again receives a non-zero ticket allocation. The same technique can be used to implement

ticket transfers for hierarchical stride scheduling.
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3.5.3 Ticket Inflation and Deflation

Ticket inflation and ticket deflation are alternatives to explicit ticket transfers that alter resource

rights by manipulating the overall supply of tickets. An instance of inflation or deflation simply

requires a single dynamic modification to a client. If � new tickets are created for client
�

, then

the resulting inflation is implemented via client modify(A, t). Similarly, if � of
�

’s existing

tickets are destroyed, the resulting deflation is implemented via client modify(A,



t).

For lottery scheduling, inflation and deflation simply change the underlying ticket allocation

associated with a client. In the case of multi-winner lotteries, ticket inflation and deflation also

terminate the current superquantum. For stride scheduling, ticket inflation causes a client’s

stride and pass to decrease; deflation causes its stride and pass to increase. The effect is the

same under hierarchical stride scheduling; similar updates are also applied to each internal

node that covers the client.

3.5.4 Ticket Currencies

A ticket currency defines a resource management abstraction barrier that contains the effects

of ticket inflation in a modular way. Tickets are denominated in currencies, allowing resource

rights to be expressed in units that are local to each logical module. The effects of inflation

are locally contained by effectively maintaining an exchange rate between each local currency

and a common base currency that is conserved. There are several different implementation

strategies for currencies.

One eager implementation strategy is to always immediately convert ticket values denomi-

nated in arbitrary currencies into units of the common base currency. Any changes to the value

of a currency would then require dynamic modifications, via client modify(), to all clients

holding tickets denominated in that currency, or one derived from it. An important exception

is that changes to the number of tickets in the base currency do not require any modifications

to client state. This is because all client scheduling state is computed from ticket values ex-

pressed in base units, and the state associated with distinct clients is independent. Thus, the

scope of any changes in currency values is limited to exactly those clients which are affected.

Since currencies are used to group and isolate logical sets of clients, the impact of currency

fluctuations will typically be very localized.

An alternative lazy implementation strategy defers the computation of ticket values until they

are actually needed. For example, consider a list-based lottery scheduler that is implemented

for a system with a fixed number of base tickets. Since only a portion of the ticket space is

traversed during an allocation, only those clients that are actually examined need to have their

tickets converted into base units. A lazy implementation exploits this fact to defer computing
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the effects of dynamic changes that result from ticket transfers and inflation
�

. The efficiency of

such an approach depends on the relative frequencies of dynamic operations and allocations, as

well as the distribution of tickets to clients. Lazy implementations may also benefit by caching

ticket and currency values to accelerate conversions.

Various optimizations are also possible. For example, in some systems it may be acceptable

to temporarily delay the effect of dynamic changes. If delays are large compared to the

average allocation granularity, then performance may be improved by batching changes, such

as modifications to currency values. A related optimization is to maintain exchange rates that

are only approximately correct and loosely consistent. For example, updates to currency values

could be deferred until significant changes accumulate. System-enforced limits could even

be placed on the allowed rate of inflation and deflation, avoiding large, rapid fluctuations in

currency values. Such optimizations would be particularly useful for distributed scheduler

implementations, since communication would be relatively expensive.

�

Many scheduling operations depend upon accurate maintenance of the total number of active base tickets.
Inflation or deflation of the base currency would require immediate work to reflect changes in the overall number
of base tickets.
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Chapter 4

Performance Results

This chapter presents results that quantify the performance of lottery scheduling, multi-winner

lottery scheduling, stride scheduling, and hierarchical stride scheduling. Basic analytical results

are initially introduced to serve as a guide to the behavior of the core scheduling algorithms.

Quantitative results obtained from simulation experiments are then presented to further eval-

uate the scheduling mechanisms in both static and dynamic environments. Many graphical

presentations of simulation data are included to facilitate detailed comparisons between the

various mechanisms.

4.1 Basic Analysis

In general, there are �
� clients competing for a resource, and each client � � has � � tickets, for a

total of �� � � ���� � � � tickets. As described in Chapter 3, the throughput accuracy for each client

is quantified by measuring the difference between its specified allocation and the allocation

that it actually receives. After ��� consecutive allocations, the specified allocation for client � �
is ��� � � �	� . A client’s absolute error is defined as the absolute value of the difference between

its specified and actual number of allocations. The pairwise relative error between clients

��� and ��
 is defined as the absolute error for the subsystem containing only � � and � 
 , where

� �� � � ��
 , and ��� is the total number of allocations received by both clients.

The response time for each client is measured as the elapsed time from its completion of

one quantum, up to and including its completion of another. The response-time variability

associated with a client is quantified by the spread of its response-time distribution. The range

of this spread is given by its minimum and maximum response times. The response-time

distribution can also be characterized by its mean, � , and its standard deviation, � . Another

useful metric that normalizes variability is the dimensionless coefficient of variation, ����� .
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The rest of this section presents some basic analytical results for lottery scheduling, multi-

winner lottery scheduling, stride scheduling, and hierarchical scheduling. Each mechanism is

analyzed in terms of both throughput accuracy and response-time variability.

4.1.1 Lottery Scheduling

Lottery scheduling is a randomized algorithm, and can be easily analyzed using well-known

results from probability and statistics [Tri82]. The number of lotteries won by a client has

a binomial distribution. The probability that client � � will win a particular lottery is simply

� � � � ���	� . After ��� identical allocations, the expected number of wins � � for client ��� is

� 	 � � ��� � � � � , with variance � ���� � � � � ��� � 
 � � � . Thus, the expected throughput error for a

client is ��� � ��� � . Since error increases slowly with ��� , throughput accuracy steadily improves

when error is measured as a percentage of ��� . Nevertheless, the absolute value of the error can

still grow without bound.

The response time for a client has a geometric distribution. The expected number of

lotteries ��� that client ��� must wait before completing its first win is �
	�� � � � � � � � , with variance

� �� � � � � 
 � � � � � �� . The coefficient of variation is � � � � �
	�� � � � � � 
 � � . Thus, the response-

time variability for client ��� depends only on its relative share of tickets, � � � � � �	� . When

� � is large, the coefficient of variation is small, as desired. However, when � � is small, the

coefficient of variation approaches one, indicating that response-time variability is extremely

high for low-throughput clients.

4.1.2 Multi-Winner Lottery Scheduling

Multi-winner lottery scheduling is a hybrid scheme with both randomized and deterministic

components. A multi-winner lottery selects � � winners per lottery; the � � consecutive quanta

allocated by a lottery are referred to as a superquantum. A multi-winner lottery with � � winners

can be analyzed as � � separate lotteries, each of which independently selects a winner from

an equal-size region of the ticket space that contains � � � � tickets. Thus, all of the results

presented for lottery scheduling can also be applied to each winner in a multi-winner lottery.

The key feature of a multi-winner lottery is its ability to provide some deterministic guaran-

tees, depending on both the distribution of tickets to clients and the value of � � . Deterministic

guarantees are based on the observation that if there is only a single client in a particular

region, then that client will win the region’s lottery with probability 1. Thus, each client � �
is deterministically guaranteed of receiving at least � � � � ���� quanta per superquantum. The

throughput accuracy and response-time variability for client � � depend on the fraction of its

allocations that is performed deterministically. Let � ��� � � � � �� � denote the number of quanta
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that are deterministically allocated to client � � per superquantum. Let � � � � �� 
 � � denote the

fractional number of quanta that are stochastically allocated to client � � per superquantum.

If � ��� � , the multi-winner lottery always allocates the precise number of quanta specified

for client ��� during each superquantum, and there is no random error. In this case, the absolute

error for client ��� equals zero at some point during every superquantum. The error at other points

within a superquantum depends on the intra-superquantum schedule used to order winners. The

worst-case response time for client ��� is bounded by � ��� � 
 � � ��� �
quanta. This maximum

will occur when all � � quanta are allocated consecutively at the start of one superquantum, and

then all � � quanta are allocated consecutively at the end of the next superquantum.

If � � � � , then the throughput error for client � � will also have a random component. This

component has exactly the same properties described for ordinary lottery scheduling, where

� � ��� � , and ��� is replaced by the number of consecutive superquanta. If � � � � , then the

maximum response time for client ��� is still bounded by � � � � 
 � � � � �
quanta. Otherwise,

the response time has the same geometric distribution as for lottery scheduling, with � � ��� � ,
and ��� equal to the number of consecutive superquanta.

4.1.3 Stride Scheduling

Stride scheduling provides a strong deterministic guarantee that the absolute error for any pair

of clients never exceeds one quantum. This guarantee results from the observation that the

only source of pairwise error is due to quantization. A derivation of this bound is relatively

straightforward. Let � � and ��� denote two clients competing for a resource with a � � : � � ticket

ratio. Let � � � � �	� � denote the stride for � � , and � � denote the pass value for � � . Similarly,

let � � and � � denote the stride and pass values for � � . The initial pass values are � � ��� � ,

and � � ��� � . For each allocation, the client ��� with the minimum pass value � � is selected; if

� � � � � , then either client may be selected. The pass value � � for the selected client is then

advanced by � � . Since � � is only advanced by � � when � ��� � � , and � � is only advanced by � �
when � � � � � , the maximum possible difference between � � and � � at any time is ���
	
��� � �� � � .

The schedule produced by stride scheduling will consist of alternating sequences of allo-

cations to clients � � and ��� . Without loss of generality, assume that � � � � � . The absolute error

for client ��� will be greatest immediately following the longest possible sequence of allocations

to client � � . (Because there are only two clients, their absolute error values are identical, so

this is also the maximum error for client � � .) The maximum number of consecutive allocations

to client � � is
����
�� � � � � �� � � . For this interval, the specified allocation for client � � is

� �� � � � � � � �� � � .

Because the actual allocation to client � � over this interval is zero, its absolute error over

the interval is equal to its specified allocation. Since
� � �� � � � � � � � �� � , it follows directly that
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the maximum absolute error for � � is bounded by
� �� � � � � � � � � �� � � �

. Therefore, the maximum

throughput error for any pair of clients is bounded by a single quantum. Similarly, for any

pair of clients, the largest difference between the minimum and maximum response times for

the same client is also bounded by one quantum. Thus, for a pair of clients, response-time

distributions will be extremely tight.

Unfortunately, throughput error and response-time variability can be much larger when

more than two clients are scheduled. Skewed ticket distributions can result in ����� ��� absolute

error, where �
� is the number of clients. For example, consider a very uneven ticket distribution

in which ��� 
 �
“small” clients each have a single ticket, and one “large” client has � � 
 �

tickets. The stride scheduling algorithm will schedule the large client first, and will allocate

��� 
 �
quanta to it before any other client is scheduled. Since the specified allocation for the

large client is only half that amount, its absolute error is ��� � � � . Response-time variability

is also extremely high for such distributions, since there is no interleaving of the many small

clients with the single large client.

4.1.4 Hierarchical Stride Scheduling

Hierarchical stride scheduling provides a tighter ������ ����� bound on absolute error, eliminating

the worst-case ��� �
�	� behavior that is possible under ordinary stride scheduling. Hierarchical

stride scheduling can be analyzed as a series of pairwise allocations among successively smaller

groups of clients at each level in the hierarchy. The error for each pairwise allocation is bounded

by one quantum, and in the worst case, error can accumulate at each level. Thus, the maximum

absolute error for a series of allocations is the height of the tree, which is
� � � � ��� for a balanced

binary tree.

The response-time characteristics of hierarchical stride scheduling are more difficult to

analyze. For highly skewed ticket distributions, response-time variability can be dramatically

lower than under ordinary stride scheduling. However, for other distributions, response-time

variability can be significantly higher. The explanation for this behavior is that response-time

variability can potentially increase multiplicatively at successive levels of the hierarchy.

Consider the first level of the tree-based data structure used for hierarchical stride schedul-

ing. This level consists of the two children of the root node, � � and ��� , each representing an

aggregate group of clients. One of these two nodes is selected during every hierarchical allo-

cation. The response-time distribution for each of these nodes will be tight, with a maximum

difference of one quantum between its minimum and maximum values. For example, suppose

that the range for the right node ��� is [3, 4]. Now consider the two children of this node, ��� �

and ����� . If all other nodes in the hierarchy are ignored, the response-time distributions for
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this isolated pair of nodes are also very tight; suppose that the range for the left node � � � is

[2, 3]. However, since node ��� � is only selected every second or third time that its parent � �
is selected, its overall response-time range expands to [2 � 3, 3 � 4] = [6, 12].

In general, the minimum (maximum) response time for a client can be as low (high) as

the product of the minimum (maximum) response times computed in isolation for each of

its ancestors. However, the actual spread may not be this large for some distributions. For

example, the periodic behavior of a child may coincide with the periodic behavior of its parent if

their periods divide evenly. Nevertheless, multiplicative increases in response-time variability

are still possible for many distributions of tickets to clients.

4.2 Simulation Results

This section presents the results of quantitative experiments designed to evaluate the effective-

ness of the various proportional-share mechanisms described in Chapter 3. The behavior of

each mechanism is examined in both static and dynamic environments. As predicted by the

basic analytical results, when compared to the randomized lottery-based mechanisms, the de-

terministic stride-based approaches generally provide significantly better throughput accuracy,

with significantly lower response-time variability.

For example, Figure 4-1 presents the results of scheduling three clients with a 3 : 2 : 1 ticket

ratio for 100 allocations. The dashed lines represent the ideal allocations for each client. It is

clear from Figure 4-1(a) that lottery scheduling exhibits significant variability at this time scale,

due to the algorithm’s inherent use of randomization. The results for multi-winner lottery

scheduling with � � � 4, depicted in Figure 4-1(b), demonstrate reduced variability for the

clients with large ticket shares. Figures 4-1(c) and 4-1(d) indicate that deterministic stride

scheduling and hierarchical stride scheduling both produce the same precise periodic behavior:�
, � ,

�
,
�

, � , � .

The remainder of this section explores the behavior of these four scheduling mechanisms in

more detail, under a variety of conditions. Throughput accuracy and response-time variability

are used as the primary metrics for evaluating performance. Ideally, throughput error and

response-time variability should both be minimized. However, these goals can conflict for

many distributions of tickets to clients, resulting in different tradeoffs for the various scheduling

techniques. For example, hierarchical stride scheduling generally minimizes throughput error,

but may exhibit highly variable response times for some ticket distributions.

Although a large amount of data is presented, a regular structure has been imposed to

facilitate comparisons. Figures that include results for multiple mechanisms generally consist

of four rows of graphs in a fixed top-to-bottom order: lottery scheduling (L), multi-winner
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Figure 4-1: Example Simulation Results. Simulation results for 100 allocations involving three
clients, � , � , and � , with a 3 : 2 : 1 allocation. The dashed lines represent ideal proportional-share
behavior. (a) Randomized lottery scheduler. (b) Hybrid multi-winner lottery scheduler with � ��� � .
(c) Deterministic stride scheduler. (d) Hierarchical stride scheduler.
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lottery scheduling (M), stride scheduling (S), and hierarchical stride scheduling (H). Graphs

that appear in the same column are generally associated with the same client ticket allocation,

and allocations are arranged in a decreasing left-to-right order. A graph depicting results for a

client with � tickets under scheduling algorithm
�

that appears in Figure � will be referred to

as Figure � � �  � � .

4.2.1 Static Environment

Before considering the effects of dynamic changes, baseline behaviors are examined for a

static environment. A static environment consists of a fixed set of clients, each of which has a

constant ticket allocation. The first set of simulations presented involve only two clients; later

simulations probe the effects of introducing additional clients.

Two Clients

Figures 4-2 and 4-3 plot the absolute error
�

and response-time distributions that result from

simulating two clients under each scheduling scheme. The data depicted is representative of

simulation results over a wide range of pairwise ratios. The 7 : 3 ticket ratio simulated in

Figure 4-2 is typical of small ratios, and the 13 : 1 allocation simulated in Figure 4-3 is typical

of large ratios.

The graphs that appear in the first column of Figures 4-2 and 4-3 plot the absolute error

observed over a series of 1000 allocations. The error for the randomized lottery scheduling

technique is averaged over 1000 separate runs, in order to quantify its expected behavior. The

error values observed for lottery scheduling are approximately linear in � ��� , as demonstrated

by Figures 4-2(L) and 4-3(L). Thus, as expected, lottery-scheduler error increases slowly with

� � , indicating that accuracy steadily improves when error is measured as a percentage of � � . It

may initially seem counterintuitive that the absolute error is considerably smaller for the 13 : 1

ratio than for the 7 : 3 ratio. The explanation for this effect is that the standard deviation for a

client’s actual allocation count is proportional to
�
� � � 
 ��� , where � is the client’s probability

of winning a single lottery. For the 13 : 1 ratio, this value is roughly 0.26, while it is about 0.46

for the 7 : 3 allocation. Thus, the expected absolute error is indeed smaller for the larger ratio.

However, when measured as a percentage of the number of allocations due to each client, the

error is largest for the single-ticket client under the 13 : 1 ratio.

Three separate error curves are presented for each multi-winner lottery scheduling graph,

corresponding to � � � 2, 4, and 8 winners. Because multi-winner lottery scheduling has a

�

In this case the relative and absolute errors are identical, since there are only two clients.
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Figure 4-2: Static Environment, 7:3 Allocation. Simulation results for two clients with a static 7 : 3
ticket ratio under lottery scheduling, multi-winner lottery scheduling, stride scheduling, and hierarchical
stride scheduling. The first column graphs the absolute error measured for each mechanism over 1000
allocations. The second and third columns graph the response-time distributions for each client under
each mechanism over one million allocations.
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Figure 4-3: Static Environment, 13:1 Allocation. Simulation results for two clients with a
static 13 : 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling, stride scheduling, and
hierarchical stride scheduling. The first column graphs the absolute error measured for each mechanism
over 1000 allocations. The second and third columns graph the response-time distributions for each
client under each mechanism over one million allocations.
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randomized component, each of these error curves is also an average over 1000 separate runs.

The error curves observed for the multi-winner lotteries have the same general shape as those

for a single-winner lottery. However, their absolute value is lower, often by a large amount. For

the 7 : 3 ratio in Figure 4-2(M), the reductions in error are about 25%, 50%, and 60% for � � �
2, 4, and 8, respectively. For the 13 : 1 ratio in Figure 4-3(M), the corresponding reductions are

approximately 3%, 10%, and 30%. As � � increases, the deterministic component of the multi-

winner lottery provides successively better approximations to the specified allocations. This

decreases random error, since a smaller fraction of allocations is determined stochastically. For

the 7 : 3 ratio, the deterministic approximation improves quickly, accounting for the decreasing

marginal improvements as � � increases. The larger 13 : 1 ratio exhibits the opposite behavior,

since the probability that the single-ticket client will be selected during a superquantum remains

below 50% until � � � 8. An even larger reduction in error would result for � � � 14.

Since stride scheduling and hierarchical stride scheduling are deterministic techniques, their

absolute error curves are each plotted for a single run. As expected, the error never exceeds

a single quantum, and drops to zero after each complete period – 10 quanta for the 7 : 3 ratio,

and 14 quanta for the 13 : 1 allocation. This periodic behavior is clearly visible on the small

insets associated with each graph. The results for both stride scheduling and hierarchical stride

scheduling are identical because there are only two clients, and therefore no opportunity for

aggregation under the hierarchical scheme.

The graphs that appear in the second and third columns of Figures 4-2 and 4-3 present

response-time distributions for each client over one million allocations. A logarithmic scale is

used for the vertical axis since response-time frequencies vary enormously across the different

scheduling mechanisms. Under lottery scheduling, client response times have a geometric

distribution, which appears linear on a logarithmic scale. The response-time distributions

for clients with small allocations have a much longer tail than those for clients with larger

allocations. This is because the standard deviation for a client’s response time is
�
� � 
 � � � � ,

where � is the client’s probability of winning a single lottery. As � approaches 1, response-time

variability approaches zero; as � approaches 0, response-time variability becomes infinitely

large. For the 7 : 3 ratio shown in Figure 4-2(L), the response-time distribution for the larger

client drops off quickly, with a maximum of 12 quanta, while the maximum response time for

the smaller client is 49 quanta. Similarly, for the 13 : 1 ratio in Figure 4-3(L), the maximum

response time for the larger client is 6 quanta, but the maximum for the smaller client is off the

scale at 135 quanta.

The multi-winner lottery response-time distributions are plotted for � � � 4. With the 7 : 3

ratio depicted in Figure 4-2(M), this technique is extremely effective, reducing the maximum

response time from 49 to 7 quanta for the smaller client. With � � � 4, the deterministic
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approximation to the 7 : 3 ratio is very successful. However, for the 13 : 1 ratio presented in

Figure 4-3(M), four winners are insufficient to provide any deterministic guarantees for the

smaller client. In fact, its maximum response time actually increases to 221 quanta, although

its overall distribution tightens slightly. The original single-winner distribution has a standard

deviation of � � �
� � ��� quanta, which is reduced to � � �

� � � � quanta with four winners.

As mentioned earlier, both stride scheduling and hierarchical stride scheduling are iden-

tical when there are only two clients. These deterministic stride-based algorithms exhibit

dramatically less response-time variability than the randomized lottery-based algorithms. As

expected, for both of the pairwise ratios shown in Figures 4-2(S) and 4-3(S), client response

times never varied by more than a single quantum under stride scheduling. The worst-case

� � �
� � � � quanta for the 13 : 1 ratio under lottery scheduling is completely eliminated under

stride scheduling – all response times for the small client are exactly 14 quanta. The worst-case

� ��� ����� quanta for the 7 : 3 ratio under lottery scheduling is smaller by a factor of five under

stride scheduling, with � � � � ��� quanta.

Several Clients

A wider range of scheduling behavior is possible when more than two clients are considered.

Figure 4-4 plots the absolute error for four clients with a 13 : 7 : 3 : 1 ticket allocation, and

Figure 4-5 graphs the corresponding response-time distributions for each client. The 13 : 7 : 3 : 1

ratio was selected to allow direct comparisons with the pairwise 7 : 3 and 13 : 1 ratios used in

Figures 4-2 and 4-3.

As expected, the client error curves for lottery scheduling shown in Figure 4-4(L) have

the same general shape, linear in � ��� , as the pairwise error curves in Figures 4-2(L) and

4-3(L). In general, lottery scheduling is insensitive to the number of clients; each client’s error

is determined solely by its own relative ticket share. However, the overall number of tickets

with four clients is larger than in either of the pairwise cases, so the associated reductions in

relative ticket shares are reflected in the client error curves. Recall that the standard deviation

for a client’s actual allocation is proportional to
�
� � � 
 ��� , where � is the client’s probability

of winning a single lottery. For the client in Figure 4-4(L,13), this value increases from

approximately 0.26 to 0.50, matching the near factor-of-two increase in the client’s absolute

error. The error for the client in Figure 4-4(L,7) remains roughly unchanged, since its per-

lottery win probability changes from 0.7 to about 0.29 � (1



0.7). The changes in absolute

error for the smaller clients also mirror the relative changes in the standard deviations for their

actual allocations.
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Figure 4-4: Throughput Accuracy, Static 13:7:3:1 Allocation. Simulation results for four
clients with a static 13 : 7 : 3 : 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling,
stride scheduling, and hierarchical stride scheduling. Each graph plots the absolute error for a single
client over 1000 allocations. A single run was used for each deterministic technique (S, H), and 1000
separate runs were averaged for each randomized technique (L, M). The distinctive black band along the
time axis in the (M,3) graph is actually the error curve for � � ��� . This particular multi-winner lottery
configuration produces exact deterministic behavior with very low error.

78



0 10 20 30 40 50

0

1

10

100

1000

10000

100000

1000000

L
ot

te
ry

 (
L

)
F

re
qu

en
cy

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50

0

1

10

100

1000

10000

100000

1000000

M
ul

ti
-W

in
ne

r 
(M

)
F

re
qu

en
cy

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50

0

1

10

100

1000

10000

100000

1000000

St
ri

de
 (

S)
F

re
qu

en
cy

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50

Response Time (quanta)
13 Tickets

0

1

10

100

1000

10000

100000

1000000

H
ie

ra
rc

hi
ca

l (
H

)
F

re
qu

en
cy

0 10 20 30 40 50

Response Time (quanta)
7 Tickets

0 10 20 30 40 50

Response Time (quanta)
3 Tickets

0 10 20 30 40 50

Response Time (quanta)
1 Ticket

Figure 4-5: Response Time Distribution, Static 13:7:3:1 Allocation. Simulation results for
four clients with a static 13 : 7 : 3 : 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling,
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a single client over one million allocations.
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As for the pairwise simulation results, three separate error curves are plotted for each

multi-winner lottery scheduling graph, corresponding to � � � 2, 4, and 8 winners. In general,

the error curves observed for the multi-winner lotteries have the same shape as the error curves

for the single-winner lottery, with lower absolute values. The largest reductions in client error

occur when the value of � � produces an accurate deterministic approximation to the client’s

actual share. For example, the client in Figure 4-4(M,13) has a
�
� � � � � 54.17% share of

the total number of tickets. With � � � 2, the client is effectively allocated a 50% share

deterministically, and its remaining 4.17% share by lottery. Increasing � � to 4 or 8 provides

little additional benefit. Similarly, the largest reduction in error for the client in Figure 4-4(M,7)

occurs when � � is increased from 2 to 4. This is because it has a � ��� � � 29.17% share of the

total number of tickets, and with � � � 4, it is allocated a 25% share deterministically, and the

remaining 4.17% share by lottery. Another interesting example is the error curve for � � � 8

plotted in Figure 4-4(M,3). In this case, the absolute error never exceeds a single quantum. A

quick check of this client’s relative ticket share reveals that its entire � � � � � 12.5% share is

allocated deterministically, totally eliminating all error due to randomization.

With more than two clients, the maximum absolute error under stride scheduling is no longer

bounded by a single quantum. Figure 4-4(S,13) reveals a maximum absolute error of 1.63 under

stride scheduling. In contrast, Figure 4-4(H,13) shows that the corresponding maximum error

under hierarchical stride scheduling is 1.25, a reduction of 23%. However, Figures 4-4(S,7)

and (H,7) indicate that the maximum absolute error for the 7-ticket client actually increases

under hierarchical stride scheduling, from 0.58 to 0.92 quanta. Hierarchical stride scheduling

provides a tighter bound on worst-case client error than ordinary stride scheduling. However,

for many distributions, the worst-case client error is much smaller than even the
� � � � ��� bound

provided by hierarchical stride scheduling. Thus, the hierarchical scheme does not necessarily

improve either the worst-case or the average client error.

Figure 4-5 displays response-time distributions for each client under all four scheduling

mechanisms. Client response times have geometric distributions under lottery scheduling,

which appear linear on the logarithmic scale. Since each client has a smaller share of the

overall number of tickets than it did in the pairwise simulations presented in Figures 4-2(L) and

4-3(L), all of the response-time distributions have larger standard deviations and longer tails.

The client shown in Figure 4-5(L,13) has the tightest distribution, ranging from 1 to 19 quanta

with a standard deviation of � � �
� � � quanta. The client in Figure 4-5(L,1) has the widest

distribution, ranging from 1 to 243 quanta (off the scale), with � � � � � � � quanta.

The multi-winner lottery response-time distributions are plotted for � � � 4. The response-

time distributions for the larger clients in Figures 4-5(M,13) and (M,7) are dramatically im-

proved, while the distributions for the smaller clients, shown in Figures 4-5(M,3) and (M,1),
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display more modest improvements. The two larger clients, with 13 and 7 tickets, receive

deterministic allocations of 2 quanta and 1 quantum per superquantum, respectively. These

deterministic guarantees directly translate into small maximum response times. In contrast, the

two smaller clients do not receive any deterministic guarantees, resulting in large maximum

response times of 71 and 226 quanta. Nevertheless, these still represent an improvement over

the single-winner lottery. The standard deviation is reduced from � � � � � � quanta to � � � � � �
quanta for the 3-ticket client in Figure 4-5(M,3), and from � � � � � � � to � � ��� � � � quanta for

the single-ticket client in Figure 4-5(M,1).

As expected, the response-time distributions for the deterministic stride-based algorithms

are vastly better than those for the randomized lottery-based algorithms. The maximum spread

exhibited by any of the response-time distributions under both stride scheduling and hierarchical

stride scheduling is only 4 quanta, in contrast to hundreds of quanta for the lottery-based

schedulers. Comparing the two stride-based approaches, the hierarchical scheduler reduces

the variability of the largest client from � � � ��� � quanta to � � � � � � quanta, as shown in

Figures 4-5(S,13) and (H,13). However, it also increases the variability of the other clients.

For example, the standard deviation for the 7-ticket client jumps from � � � � � � quanta to

��� �
�

� � quanta.

Stride Scheduling vs. Hierarchical Stride Scheduling

Most of the simulation results for static environments are easily explained. The only exception

is that the difference between stride scheduling and hierarchical stride scheduling is still unclear.

The hierarchical technique appears to reduce client error and response-time variability for some

clients. However, it may also have the opposite effect on a different subset of the clients that it

schedules.

Additional experiments are presented below that examine the behavior of stride scheduling

and hierarchical stride scheduling for a larger number of clients and a wider range of ticket dis-

tributions. An additional half-stride variant of hierarchical stride scheduling is also considered.

This variant is capable of achieving lower absolute error by starting each node halfway into its

stride, instead of at the beginning of its stride. Because a complete graphical presentation of

all simulation results would require too much space, summary statistics are presented for a set

of representative ticket distributions.

Figures 4-6 and 4-7 plot the mean error, maximum error, and response-time variability for

different sets of clients under stride scheduling, hierarchical stride scheduling, and half-stride

hierarchical scheduling. Each experiment consists of one hundred thousand allocations for a

particular ticket distribution. Seven different distributions of tickets to clients are investigated.
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Figure 4-6: Stride vs. Hierarchical Stride Scheduling, 10 Clients. Simulation results for ten
clients with various distributions of tickets to clients: EQUAL – 1 : 1 : ����� : 1, LARGE – 9 : 1 : ����� : 1,
SEQ – 1 : 2 : ����� : 10, PRIME – 2 : 3 : ����� : 29, RAND-U – uniform random over [10, 100], RAND-N –
normal random with � ������� and � �	�
� , RAND-G – geometric random with � ��� . Each symbol
represents a single client under stride scheduling (triangle), hierarchical stride scheduling (square), or
half-stride hierarchical stride scheduling (circle).
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Figure 4-7: Stride vs. Hierarchical Stride Scheduling, 50 Clients. Simulation results for 50
clients with various distributions of tickets to clients: EQUAL – 1 : 1 : ����� : 1, LARGE – 49 : 1 : ����� : 1,
SEQ – 1 : 2 : ����� : 50, PRIME – 2 : 3 : ����� : 229, RAND-U – uniform random over [10, 100], RAND-N –
normal random with � � ����� and � �	�
� , RAND-G – geometric random with � �	� . Each symbol
represents a single client under stride scheduling (triangle), hierarchical stride scheduling (square), or
half-stride hierarchical stride scheduling (circle).
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EQUAL is simply an equal distribution of one ticket to each client. LARGE is a distribution

in which one client owns half of the tickets, and all other clients have one ticket each. SEQ

sequentially allocates
	

tickets to the
	 ���

client. PRIME allocates � � tickets to the
	 ���

client,

where � � is the
	����

prime number. RAND-U is a uniform random distribution with a minimum of

10 tickets and a maximum of 100 tickets. RAND-N is a normal (Gaussian) random distribution

with mean � � �
��� tickets, and standard deviation � � ��� tickets. RAND-G is a geometric

random distribution with mean ��� � tickets.

Figure 4-6(a) presents the mean absolute error, averaged over one hundred thousand al-

locations, for ten clients with the various ticket distributions described above. Each of the

mechanisms performs identically for the EQUAL distribution. For the remaining ticket distri-

butions, hierarchical stride scheduling and its half-stride variant generally exhibit lower mean

error than ordinary stride scheduling. The half-stride technique consistently produces the

smallest mean error. The largest differences occur for the most skewed distributions, LARGE

and RAND-G. For RAND-U, hierarchical stride scheduling displays higher mean error than

ordinary stride scheduling, although the half-stride hierarchical variant is still best.

Figure 4-6(b) presents a similar graph that plots the maximum absolute error observed

over one hundred thousand allocations. The different mechanisms behave identically for

the EQUAL distribution. For the remaining ticket distributions, both hierarchical schemes

consistently produce the lowest maximum error for their worst-case client, with the single

exception of RAND-N, for which the basic hierarchical scheme is slightly worse than ordinary

stride scheduling. Once again, the largest differencesoccur for LARGE and RAND-G, although

SEQ and PRIME also exhibit significantly lower worst-case maximums under the hierarchical

techniques. The maximum error distributions for other clients (i.e., excluding the worst-case

client) are more varied. The half-stride hierarchical scheme generally produces the lowest

maximum errors for the most clients. Ordinary stride scheduling and the basic hierarchical

scheme are roughly comparable in this respect.

Figure 4-6(c) plots the response-time variability observed for each client over one hundred

thousand allocations. Response-time variability is independently measured for each client by

computing the coefficient of variation � � ��� � , where � � is the standard deviation of the response-

time distribution associated with client � � , and � � is the mean of that distribution. This metric

provides a dimensionless, relative measure of the spread of a distribution. Simply plotting

absolute � � values would make it impractical to compare values across different clients and

distributions.

The results for response-time variability depicted in Figure 4-6(c) are almost completely

opposite to the results for absolute error. In general, the ordinary stride scheduling technique

produces the lowest response-time variability. The difference is greatest for RAND-U and
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RAND-N, for which stride scheduling outperforms the hierarchical techniques by nearly a factor

of two. However, two notable exceptions are LARGE and RAND-G. For these distributions,

both hierarchical techniques achieve a substantial reduction in response-time variability over

ordinary stride scheduling.

These results are consistent with the basic analytical results derived for hierarchical stride

scheduling. Hierarchical stride scheduling can produce multiplicative increases in response-

time variability for some ticket distributions. However, highly skewed distributions such as

LARGE and RAND-G generally involve large pairwise ratios that individually yield almost

no response-time variability. While the multiplicative effects of hierarchical stride scheduling

still expand the range of response times, the high pairwise ratios ensure that extreme values

in that range are very rare. For less skewed distributions such as RAND-U and RAND-

N, the multiplicative range-expanding effects of hierarchical stride scheduling result in high

response-time variability.

Figure 4-7 presents the same metrics as Figure 4-6 for a larger set of 50 clients. Qualitatively,

the results for 50 clients are largely the same as those for 10 clients. As expected, the

mechanisms behave identically for the EQUAL distribution. For LARGE and RAND-G, the

hierarchical techniques still significantly outperform ordinary stride scheduling in terms of both

absolute error and response-time variability. For other distributions, the hierarchical techniques

are generally better in terms of absolute error, but worse in terms of response-time variability.

The larger number of clients substantially increases the response-time variability gap between

stride scheduling and the hierarchical techniques for SEQ, PRIME, and RAND-N.

4.2.2 Dynamic Environment

A key feature of both the lottery-based and stride-based scheduling mechanisms is their support

for dynamic operations. The following set of simulations examines the effects of frequent

dynamic changes. Dynamic modifications to ticket allocations are considered first, followed by

dynamic changes in the number of clients competing for a resource. Overall, the performance

of the scheduling mechanisms is largely unaffected by dynamic behavior, indicating that they

are well-suited to dynamic environments.

Dynamic Ticket Modifications

The notation [
�

, � ] will be used to indicate a random ticket allocation that is uniformly

distributed from
�

to � . A new, randomly-generated ticket allocation is dynamically assigned

to each client with a 10% probability at the end of each quantum. On average, this causes

each client’s ticket assignment to be recomputed every 10 quanta. Thus, the timing of dynamic
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changes to a client’s ticket allocation follows a geometric distribution, while its actual ticket

values are drawn from a uniform distribution. The appropriate client modify() operation is

executed after each change. To compute error values, specified allocations were determined

incrementally. Each client’s specified allocation was advanced by ��� � on every quantum,

where � is the client’s current ticket allocation, and � is the current ticket total.

Figure 4-8 plots the absolute error and response-time distributions that result from simulat-

ing two clients with rapidly-changing dynamic ticket allocations. This data is representative of

simulation results over a large range of pairwise ratios and a variety of dynamic modification

techniques. For easy comparison, the average dynamic ticket ratio is identical to the static

ticket ratio used in Figure 4-2.

The graphs that appear in the first column of Figure 4-8 show the absolute error measured

over a series of 1000 allocations for a dynamic [5,9] : [2,4] ticket ratio. During these 1000

allocations, the ticket allocation for the larger client is modified 93 times, and the allocation

for the smaller client is modified 120 times. Despite the dynamic changes, the mean absolute

error for lottery scheduling, shown in Figure 4-8(L), is nearly identical to that measured for

the static 7 : 3 ratio depicted in Figure 4-2(L). In general, the behavior of lottery scheduling is

insensitive to changes in ticket allocations, since it is a memoryless algorithm.

Three error curves are plotted in Figure 4-8(M) for multi-winner lottery scheduling, corre-

sponding to � � � 2, 4, and 8 winners. For � � � 2, the error curve is nearly identical to the

corresponding curve for the static environment shown in Figure 4-2(M). For � � � 4 and � � �
8, the error is approximately 20% to 30% higher in the dynamic case. This increase is mainly a

result of the need to terminate the current superquantum after each dynamic change. Since the

timing of dynamic changes is geometrically distributed for each client, large superquanta are

frequently interrupted. Nevertheless, the multi-winner lottery approach is still able to achieve

significant reductions in error over ordinary lottery scheduling. It is important to note that the

well-behaved dynamic performance of multi-winner lottery scheduling is not accidental. For

example, many different schemes were attempted to avoid terminating the current superquan-

tum in response to a dynamic change. All of them resulted in error curves that were linear in

the number of dynamic changes, exceeding the error produced by ordinary lottery scheduling.

The results for stride scheduling and hierarchical stride scheduling are identical when only

two clients are scheduled. As expected, the error for the stride-based schemes never exceeds

a single quantum, despite the frequent dynamic modifications to ticket allocations. However,

as can be seen in the small insets associated with each graph, the error-value patterns are much

more erratic for the dynamic ticket ratio in Figure 4-8(S) than for the static ticket ratio in

Figure 4-2(S).
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Figure 4-8: Dynamic Ticket Modifications, [5,9]:[2,4] Allocation. Simulation results for two
clients with a dynamic [5,9] : [2,4] ticket ratio under lottery scheduling, multi-winner lottery scheduling,
stride scheduling, and hierarchical stride scheduling. The first column graphs the absolute error measured
for each mechanism over 1000 allocations. The second and third columns graph the response-time
distributions for each client under each mechanism over one million allocations.
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The graphs presented in the second and third columns of Figure 4-8 plot response-time

distributions for each client over one million allocations. For lottery scheduling, client response

times have a geometric distribution, which appears linear on the logarithmic scale. The

response-time distributions for the dynamic [5,9] : [2,4] ratio in Figure 4-8(L) are nearly the

same as the corresponding ones for the static 7 : 3 ratio in Figure 4-2(L). The response-time

distributions for the multi-winner lottery with � � � 4 shown in Figure 4-8(M) are more variable

than those for the static case graphed in Figure 4-2(M). This is due to the randomness introduced

by fluctuating ticket values, as well as the need to terminate the current superquantum after every

dynamic change. Although the standard deviation for the larger client is only marginally higher

than in the static case, the standard deviation for the smaller client increases by approximately

26%. A similar pattern is also exhibited by the stride-based scheduling algorithms. In this case

the smaller client experiences an 86% increase in the standard deviation for its response-time

distribution, compared to the static case presented in Figure 4-2(S,3). Regardless of this relative

increase, the response-time distributions for the deterministic stride-based techniques are still

dramatically less variable than those for the randomized lottery-based schemes.

Figure 4-9 displays the absolute error measured for a larger set of four clients with a

[10,16] : [5,9] : [2,4] : 1 ticket allocation. This dynamic ratio was chosen to facilitate compar-

isons with Figure 4-4, which uses a static ratio with the same average values. Response-time

distributions have been omitted for the dynamic [10,16] : [5,9] : [2,4] : 1 simulations, since they

are not qualitatively different from the response-time distributions shown for the dynamic

[5,9] : [2,4] in Figure 4-8.

Each graph contained in Figure 4-9 plots the absolute error for a single client over 1000

allocations. During these 1000 allocations, the ticket assignments for each client are modified

94, 92, 116, and zero times, in order of decreasing ticket values. As for earlier simulations,

the results for lottery scheduling and multi-winner lottery scheduling are averaged over 1000

separate runs. As expected, the error curves for dynamic lottery scheduling in Figure 4-9(L) are

essentially identical to those for static lottery scheduling in Figure 4-4(L). Lottery scheduling

is a memoryless algorithm, and is not affected by dynamic changes.

The error curves for dynamic multi-winner lottery scheduling in Figure 4-9(M) have the

same shape as those for static multi-winner lottery scheduling in Figure 4-4(M). The dynamic

error curves have larger absolute values than their static counterparts, mainly due to the early

termination of superquanta in response to dynamic changes. The only other notable difference

is between Figures 4-9(M,[2,4]) and 4-4(M,3), for � � � 8. In the static case, the resource share

for this client is perfectly matched by the deterministic 8-winner approximation, eliminating all

random error. In the dynamic case, this is no longer true, since the client’s own ticket allocation

varies by a factor of two, and the overall number of tickets also dynamically fluctuates.
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Figure 4-9: Dynamic Ticket Modifications, [10,16]:[5,9]:[2,4]:1 Allocation. Simulation
results for four clients with a dynamic [10,16] : [5,9] : [2,4] : 1 ticket ratio under lottery scheduling,
multi-winner lottery scheduling, stride scheduling, and hierarchical stride scheduling. Each graph plots
the absolute error for a single client over 1000 allocations. A single run was used for each deterministic
technique (S, H), and 1000 separate runs were averaged for each randomized technique (L, M).
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The results for dynamic stride scheduling, displayed in Figure 4-9(S), are comparable to

those for static stride scheduling, shown in Figure 4-4(S). In fact, the maximum absolute

error for the three largest clients is slightly lower for the dynamic ticket ratio, and it is only

marginally higher for the smallest client. Of course, the error values are more erratic for

the dynamic environment, due to the fluctuations in relative ticket shares. Stride scheduling

can correctly support dynamic changes because the state associated with distinct clients is

completely independent. Thus, a dynamic ticket modification requires only a simple local

update to the state of the affected client.

The error curves plotted for dynamic hierarchical stride scheduling in Figure 4-9(H) are

also very similar to those graphed for static hierarchical stride scheduling in Figure 4-4(H).

Despite the frequent dynamic modifications to ticket allocations, hierarchical stride scheduling

still achieves a lower error value for the worst-case client, shown in Figure 4-9(H,[10,16]),

than that produced by ordinary stride scheduling, shown in Figure 4-9(S,[10,16]). Dynamic

hierarchical stride scheduling still increases the absolute error associated with the client shown

in Figure 4-9(H,[5,9]), when compared to ordinary stride scheduling in Figure 4-9(S,[5,9]).

Dynamic Client Participation

The lottery-based and stride-based scheduling mechanisms also correctly support dynamic

changes in the number of clients competing for a resource. The behavior of each mechanism

was tested by simulating a dynamic environment. At the end of each quantum, every active

client has a 5% probability of leaving the system, and every inactive client has a 5% probability

of rejoining the system. Thus, each client follows an independent geometric distribution that

determines when it leaves and rejoins the system. An additional constraint was added to avoid

idle resource time by preventing a client from leaving the system when it is the last remaining

active client. The appropriate client leave() and client join() operations are executed when

clients leave and join the system. Specified allocations were determined incrementally, using

the same method described for dynamic ticket modifications.

An experiment involving dynamic client participation is not very interesting for only two

clients. Instead, four clients are simulated with the same 13 : 7 : 3 : 1 ticket ratio used in earlier

experiments. Each graph contained in Figure 4-10 plots the absolute error observed for a single

client over 1000 allocations. During these 1000 allocations, the 13-ticket, 7-ticket, 3-ticket,

and 1-ticket clients leave and rejoin the system 21, 28, 23, and 29 times, respectively. The error

values associated with each client are only plotted while that client is actively participating

in the resource competition. Thus, the white vertical bands visible in Figure 4-10 represent

periods of client inactivity that are the same across every experiment.
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Figure 4-10: Dynamic Client Participation, 13:7:3:1 Allocation. Simulation results for four
clients with a static 13 : 7 : 3 : 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling,
stride scheduling, and hierarchical stride scheduling. Each graph plots the absolute error for a single
client over 1000 allocations. A single run was used for each deterministic technique (S, H), and 1000
separate runs were averaged for each randomized technique (L, M).
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The results for lottery scheduling are not surprising. The error curves for lottery scheduling

with dynamic client participation, shown in Figure 4-10(L) have the same familiar shape as

those for static lottery scheduling, displayed in Figure 4-4(L). However, in the dynamic case,

the absolute error levels are significantly lower. This reduction can be explained by the fact

that, on average, there are fewer clients competing for each quantum. Thus, each client has a

larger relative ticket share than in the static case, increasing its probability of winning (e.g., it

is certain to win if it is the only active client). The error value associated with a client does not

change while the client is inactive, since only active clients are entitled to receive resources.

As usual, three separate error curves are plotted for multi-winner lottery scheduling, corre-

sponding to � � � 2, 4, and 8 winners. The dynamic error curves in Figure 4-10(M) have the

same general shape as those presented for static multi-winner lottery scheduling in Figure 4-

4(M), with absolute values that are roughly comparable. As for dynamic ticket modifications,

the perfect deterministic approximation for the client in Figure 4-4(M,3) with � � � 8 does not

extend to the dynamic case, due to fluctuations in tickets values as clients enter and leave the

system.

Stride scheduling with dynamic client participation exhibits error values that are sometimes

higher than those for stride scheduling in a static environment. The maximum error values

for the largest client in Figures 4-10(S,13) and 4-4(S,13) are nearly identical, as are those for

the smallest client, shown in Figures 4-10(S,1) and 4-4(S,1). However, the error values are

substantially higher under dynamic stride scheduling for the middle clients with 7 and 3 tickets.

For example, the maximum error for the 7-ticket client more than doubles, from 0.58 quanta in

Figure 4-4(S,7) to 1.20 quanta in Figure 4-10. This increase can be attributed to competition

under a wide range of effective ticket ratios, due to fluctuations caused by dynamic client

participation. In any case, the absolute error for these clients is still much lower than for the

worst-case client, which has a maximum error of 1.66 quanta in Figure 4-10(S,13).

Hierarchical stride scheduling with dynamic client participation also displays higher error

than that observed in a static environment. However, the absolute error levels are still reasonably

small. The maximum error of 1.68 quanta is associated with the largest client, shown in

Figure 4-10(H,13). This is marginally larger than the maximum error of 1.66 quanta for

ordinary stride scheduling, displayed in Figure 4-10(S,13), and approximately 34% greater

than the maximum error of 1.25 quanta observed for the static case in Figure 4-4(H,13). It is

interesting to note that early experiments with slightly incorrect versions of the client leave()

and client join() operations for hierarchical stride scheduling resulted in enormous error values.

In fact, transient error values even exceeded those for lottery scheduling. Thus, the fact that

these dynamic operations behave properly is neither trivial nor coincidental.
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Chapter 5

Prototype Implementations

This chapter describes prototype implementations of both lottery-based and stride-based process

schedulers for real operating system kernels. The lottery scheduler prototype implements the

complete resource management framework described in Chapter 2. The stride scheduler

prototype implements only the core proportional-share scheduling operations, and does not

support ticket transfers or currencies. Quantitative experiments involving a wide range of user-

level applications demonstrate that both prototypes provide flexible, responsive control over

relative execution rates. Overall system overhead measured using the untuned prototypes is

comparable to that observed under the default timesharing policies that they replaced. However,

microbenchmarks indicate that the prototypes could benefit from numerous optimizations.

5.1 Prototype Lottery Scheduler

I originally developed lottery-based schedulers to manage fine-grained multithreading in the

Prelude parallel runtime system [WBC
�

91]. Both list-based and tree-based implementations

were developed, and experimental ticket-based load-balancing algorithms were also designed.

However, these early implementations lacked support for important higher-level abstractions,

such as ticket transfers and currencies. Also, few applications were developed in Prelude, and

no facility was available to simultaneously execute multiple applications.

The prototype described in this section was implemented by modifying the Mach 3.0 micro-

kernel (MK82) [ABG
�

86, Loe92, BKLL93] on a 25MHz MIPS-based DECStation 5000/125.

The standard scheduling quantum on this platform is 100 milliseconds. The prototype per-

mits proportional-share allocation of processor time to control relative computation rates. Full

support is provided for ticket transfers, ticket inflation, ticket currencies, and compensation

tickets.
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| ANSI C prototype: unsigned int fast random(unsigned int s)

fast random:
move $2, $4 | R2 = S (arg passed in R4)
li $8, 33614 | R8 = 2 � constant A
multu $2, $8 | HI, LO = A � S
mflo $9 | R9 = Q = bits 00..31 of A � S
srl $9, $9, 1
mfhi $10 | R10 = P = bits 32..63 of A � S
addu $2, $9, $10 | R2 = S’ = P + Q
bltz $2, overflow | handle overflow (rare)
j $31 | return (result in R2)

overflow:
sll $2, $2, 1 | zero bit 31 of S’
srl $2, $2, 1
addiu $2, 1 | increment S’

j $31 | return (result in R2)

Figure 5-1: Fast Random Number Generator. MIPS assembly-language code that efficiently im-
plements the Park-Miller pseudo-random number generator. This is a multiplicative linear congruential
generator defined by

�
� � � ��� � �����	� � � 	 ��


� � , for � � �� �
��� . A random number is generated
in approximately 10 RISC instructions.

5.1.1 Implementation

This section describes various implementation aspects of the lottery scheduling prototype.

Detailed descriptions are provided for generating random numbers, holding lotteries, and

supporting ticket transfers, ticket currencies, and nonuniform quanta.

Random Numbers

An efficient lottery scheduler requires a fast way to generate uniformly-distributed random

numbers. The Park-Miller pseudo-random number generator produces high-quality random

numbers that are uniformly distributed between 0 and � �
� 
 �

[PM88, Car90]. I developed

a fast, low-level implementation of this generator that executes in approximately 10 RISC

instructions; Figure 5-1 lists MIPS assembly-language [Kan89] code for fast random().

Lotteries

The prototype scheduler uses a straightforward lottery implementation, similar to the one listed

in Figure 3-2. An allocation is performed by randomly selecting a winning ticket, and then

searching the list of runnable threads to locate the thread holding that ticket. Each allocation

requires a random number generation and ��� ���	� operations to traverse a run queue of length ��� ,
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accumulating a running ticket sum until it reaches the winning value. To decrease the average

search length, a simple “move-to-front” heuristic is used: whenever a thread is selected, it is

moved to the front of the list. Since those threads with the largest ticket allocations are selected

most frequently, this heuristic is very effective when the distribution of tickets to clients is

uneven.

Kernel Interface

Tickets and currencies are implemented as dynamically-allocated kernel objects with repre-

sentations that are very similar to those depicted in Figure 2-2. A minimal lottery scheduling

interface is exported by the microkernel to allow these objects to be manipulated. This in-

terface consists of operations to create and destroy tickets and currencies, operations to fund

and unfund a currency (by adding or removing a ticket from its list of backing tickets), and

operations to compute the current value of tickets and currencies in base units.

The lottery scheduling policy co-exists with the standard timesharing and fixed-priority

policies. A few high-priority threads (such as the Ethernet driver) created by the Unix server

(UX41) remain at their original fixed priorities. This is accomplished via an ad-hoc mechanism:

a constant “lottery priority” is associated with all lottery-scheduled threads, with a default value

that is higher than typical user thread priorities, but lower than those for fixed-priority kernel

and Unix server threads. In principle, all priority-scheduled threads could be changed to use

lottery scheduling, although this would require numerous modifications to many different areas

of the standard Mach system. Alternatively, a better inter-policy scheduling mechanism could

be defined to allow diverse policies to co-exist. For example, a proportional-share meta-policy

could allocate a fixed share of the processor to each distinct scheduling policy.

Ticket Currencies

The prototype uses a simple scheme to convert ticket amounts into base units. Each currency

maintains an active amount sum for all of its issued tickets. A ticket is active while it is being

used by a thread to compete in a lottery. When a thread is removed from the run queue, its

tickets are deactivated; they are reactivated when the thread rejoins the run queue.
�

If a ticket

deactivation changes a currency’s active amount to zero, the deactivation propagates to each

of its backing tickets. Similarly, if a ticket activation changes a currency’s active amount from

zero, the activation propagates to each of its backing tickets.

�

A blocked thread may transfer its tickets to another thread that will actively use them. For example, a thread
blocked pending a reply from an RPC transfers its tickets to the server thread on which it is waiting.
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Figure 5-2: Example Currency Graph. Two users compete for computing resources. Alice is
executing two tasks: task1 is currently inactive, and task2 has two runnable threads. Bob is executing
one single-threaded task, task3. The current values in base units for the runnable threads are thread2 =
400, thread3 = 600, and thread4 = 2000. In general, currencies can also be used for groups of users or
applications, and currency relationships may form an acyclic graph instead of a strict hierarchy.

A currency’s value is computed by summing the value of its backing tickets. A ticket’s

value is computed by multiplying the value of the currency in which it is denominated by its

share of the active amount issued in that currency. The value of a ticket denominated in the base

currency is defined to be its face value amount. An example currency graph with base-value

conversions is presented in Figure 5-2. Currency conversions can be accelerated by caching

values or exchange rates, although this is not implemented in the prototype.

As described earlier, the scheduler uses a simple list-based lottery with a “move-to-front”

heuristic. To handle multiple currencies, a winning ticket value is selected by generating a

random number between zero and the total number of active tickets in the base currency. The run

queue is then traversed as described earlier, except that the running ticket sum accumulates the

value of each thread’s currency in base units until the winning value is reached. Since currency

conversions are deferred until ticket values are actually needed, the prototype employs the lazy

implementation strategy discussed in Section 3.5.4.
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Ticket Transfers

The mach msg() system call was modified to temporarily transfer tickets from client to server

for synchronous RPCs. This automatically redirects resource rights from a blocked client to the

server computing on its behalf. A transfer is implemented by creating a new ticket denominated

in the client’s currency, and using it to fund the server’s currency. If the server thread is already

waiting when mach msg() performs a synchronous call, it is immediately funded with the

transfer ticket. If no server thread is waiting, then the transfer ticket is placed on a list that is

checked by the server thread when it attempts to receive the call message. � During a reply, the

transfer ticket is simply destroyed.

Nonuniform Quanta

As discussed in Section 3.1.3, a thread which consumes only a fraction
�

of its allocated

time quantum is automatically granted transient compensation tickets that inflate its value by� � � until the thread starts its next quantum. This is implemented by associating a single

compensation ticket object with each thread. This compensation ticket is denominated in

the base currency, and its amount is dynamically adjusted whenever its associated thread is

descheduled. The compensation ticket will have a value of zero if the thread always consumes a

standard quantum. The use of compensation tickets is consistent with proportional sharing, and

permits I/O-bound tasks and other applications that use few processor cycles to start quickly.

User Interface

Currencies and tickets can be manipulated via a command-line interface. User-level commands

exist to create and destroy tickets and currencies (mktkt, rmtkt, mkcur, rmcur), fund and

unfund currencies (fund, unfund), obtain information (lstkt, lscur), and to execute a shell

command with specified funding (fundx). Since the Mach microkernel has no concept of

user and the Unix server was not modified, these commands are setuid root. � A production

lottery scheduling system should protect currencies by using access control lists or Unix-style

permissions based on user and group membership.

�

In this case, it would be preferable to instead fund all threads capable of receiving the message. For example,
a server task with fewer threads than incoming messages should be directly funded. This would accelerate all
server threads, decreasing the delay until one becomes available to service the waiting message.
	 The fundx command only executes as root to initialize its task currency funding. It then performs a setuid

back to the original user before invoking exec().
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Figure 5-3: Relative Rate Accuracy. For each allocated ratio, the observed ratio is plotted for each
of three 60 second runs. The gray line indicates the ideal where the two ratios are identical.

5.1.2 Experiments

To evaluate the prototype lottery scheduler, experiments were conducted to quantify its ability

to flexibly, responsively, and efficiently control the relative execution rates of computations.

The applications used in these experiments include the compute-bound Dhrystone benchmark,

a Monte-Carlo numerical integration program, a multithreaded client-server application for

searching text, and competing MPEG video viewers.

Throughput Accuracy

The first experiment measures the accuracy with which the lottery scheduler can control the

relative execution rates of computations. Each point plotted in Figure 5-3 indicates the relative

execution rate that was observed for two tasks executing the Dhrystone benchmark [Wei84]

for sixty seconds with a given relative ticket allocation. Three runs were executed for each

integral ratio between one and ten. With the exception of the run for which the 10 : 1 allocation

resulted in an average ratio of 13.42 : 1, all of the observed ratios are close to their corresponding

allocations � . As expected, the variance is greater for larger ratios. However, even large ratios

converge toward their allocated values over longer time intervals. For example, the observed

ratio averaged over a three minute period for a 20 : 1 allocation was 19.08 : 1.

�
The observed 13.42 : 1 ratio is not really unexpected. It still falls within the 95% confidence interval for a

binomial distribution with ���
�

� � , corresponding to the 10 : 1 ticket ratio specified for that experiment.
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Figure 5-4: Fairness Over Time. Two tasks executing the Dhrystone benchmark with a 2 : 1 ticket
allocation. Averaged over the entire run, the two tasks executed 25378 and 12619 iterations per second,
for an actual ratio of 2.01 : 1.

Although the results presented in Figure 5-3 indicate that the scheduler can successfully

control computation rates, its behavior should also be examined over shorter time intervals.

Figure 5-4 plots average iteration counts over a series of 8 second time windows during a single

200 second execution with a 2 : 1 allocation. Although there is clearly some variation, the two

tasks remain close to their allocated ratios throughout the experiment. Note that if a scheduling

quantum of 10 milliseconds were used instead of the 100 millisecond Mach quantum, the same

degree of fairness would be observed over a series of subsecond time windows.

Flexible Control

A much more interesting use of lottery scheduling involves dynamically-controlled ticket

deflation. A practical application that benefits from such control is the Monte-Carlo algorithm

[PFTV88]. Monte-Carlo is a probabilistic algorithm that is widely used in the physical sci-

ences for computing average properties of systems. Since errors in the computed average are

proportional to
� � � � , where � is the number of trials, accurate results require a large number

of trials.

Scientists frequently execute several separate Monte-Carlo experiments to explore various

hypotheses. It is often desirable to obtain approximate results quickly whenever a new exper-

iment is started, while allowing older experiments to continue reducing their error at a slower

rate [Hog88]. This goal would be nearly impossible with conventional schedulers, but can be

easily achieved in the prototype system by dynamically adjusting an experiment’s ticket value
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Figure 5-5: Monte-Carlo Execution Rates. Three identical Monte-Carlo integrations are started
two minutes apart. Each task periodically sets its ticket value to be proportional to the square of its
relative error, resulting in the convergent behavior. The “bumps” in the curves mirror the decreasing
slopes of new tasks that quickly reduce their error.

as a function of its current relative error. This allows a new experiment with high error to

quickly catch up to older experiments by executing at a rate that starts high but then tapers off

as its relative error approaches that of its older counterparts.

Figure 5-5 plots the total number of trials computed by each of three staggered Monte-Carlo

tasks. Each task is based on the sample code presented in [PFTV88], and is allocated a share

of time that is proportional to the square of its relative error.
�

When a new task is started, it

initially receives a large share of the processor. This share diminishes as the task reduces its

error to a value closer to that of the other executing tasks.

A similar form of dynamic control may also be useful in graphics-intensive programs. For

example, a rendering operation could be granted a large share of processing resources until

it has displayed a crude outline or wire-frame, and then given a smaller share of resources to

compute a more polished image.

Client-Server Computation

As mentioned earlier, the Mach IPC primitive mach msg() was modified to temporar-

ily transfer tickets from client to server on synchronous remote procedure calls. Thus, a

client automatically redirects its resource rights to the server that is computing on its behalf.

�
Any monotonically increasing function of the relative error would cause convergence. A linear function

would cause the tasks to converge more slowly; a cubic function would result in more rapid convergence.
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Figure 5-6: Query Processing Rates. Three clients with an 8 : 3 : 1 ticket allocation compete for
service from a multithreaded database server. Each plotted symbol indicates the completion of a query.
The observed throughput and response time ratios closely match this allocation.

Multithreaded servers will process requests from different clients at the rates defined by their

respective ticket allocations.

I developed a simple multithreaded client-server application that resembles aspects of many

databases and information-retrieval systems. The server initially loads a 4.6 Mbyte text file

“database” containing the complete text to all of William Shakespeare’s plays.
�

It then forks

off several worker threads to process incoming queries from clients. One query operation

supported by the server is a case-insensitive substring search over the entire database, which

returns a count of the matches found.

Figure 5-6 presents the results of executing three database clients with an 8 : 3 : 1 ticket

allocation. The server has no tickets of its own,and relies completely upon the tickets transferred

by clients. Each client repeatedly sends requests to the server to count the occurrences of the

same search string. � The high-priority client issues a total of 20 queries and then terminates.

The other two clients continue to issue queries for the duration of the entire experiment.

The ticket allocations affect both response time and throughput. When the high-priority

client has completed its 20 requests, the other clients have completed a total of 10 requests,

matching their overall 8 : 4 allocation. Over the entire experiment, the clients with a 3 : 1 ticket

allocation respectively complete 38 and 13 queries, which closely matches their allocation,

�

A disk-based database could use a proportional-share mechanism to schedule disk bandwidth; this is not
implemented in the prototype. A discussion of proportional-share disk scheduling appears in Section 6.3.�

The string used for this experiment was lottery, which incidentally occurs a total of eight times in
Shakespeare’s plays.
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despite their transient competition with the high-priority client. While the high-priority client

is active, the average response times seen by the clients are 17.19, 43.19, and 132.20 seconds,

yielding relative speeds of 7.69 : 2.51 : 1. After the high-priority client terminates, the response

times are 44.17 and 15.18 seconds, for a 2.91 : 1 ratio. For all average response times, the

standard deviation is less than 7% of the average.

A similar form of control could be employed by World Wide Web servers or transaction-

processing applications to manage the response times seen by competing clients or transactions.

This would be useful in providing different levels of service to clients or transactions with

varying importance. Commercial servers could even sell tickets to clients demanding faster

service. Of course, tickets would require an external data representation to be included with

networked requests to servers. Secure cryptographic techniques could also be used to prevent

ticket forgery and theft [Sch94].

Multimedia Applications

Media-based applications are another domain that can benefit from lottery scheduling. For

example, Compton and Tennenhouse described the need to control the quality of service when

two or more video viewers are displayed — a level of control not offered by current operating

systems [CT94]. They attempted, with mixed success, to control video display rates at the

application level among a group of mutually trusting viewers. Cooperating viewers employed

feedback mechanisms to adjust their relative frame rates. Inadequate and unstable metrics for

system load necessitated substantial tuning, based in part on the number of active viewers.

Unexpected positive feedback loops also developed, leading to significant divergence from

intended allocations.

Lottery scheduling enables the desired control at the operating-system level, eliminating

the need for mutually trusting or well-behaved applications. Figure 5-7 depicts the execution

of three mpeg play video viewers (
�

, � , and � ) displaying the same music video. Tickets

were initially allocated to achieve relative display rates of
�

: � : � = 3 : 2 : 1, and were then

changed to 3 : 1 : 2 at the time indicated by the arrow. The observed per-second frame rates were

initially 2.03 : 1.59 : 1.06 (1.92 : 1.50 : 1 ratio), and then 2.02 : 1.05 : 1.61 (1.92 : 1 : 1.53 ratio)

after the change. Unfortunately, these results were distorted by the round-robin processing of

client requests by the single-threaded X11R5 server. When run with the -no display option,

frame rates such as 6.83 : 4.56 : 2.23 (3.06 : 2.04 : 1 ratio) were typical.
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Figure 5-7: MPEG Video Rates. Three MPEG viewers are given an initial � : � : � = 3 : 2 : 1
allocation, which is changed to 3 : 1 : 2 at the time indicated by the arrow. The total number of frames
displayed is plotted for each viewer. The actual frame rate ratios were 1.92 : 1.50 : 1 and 1.92 : 1 : 1.53,
respectively, due to distortions caused by the X server.

Load Insulation

Support for multiple ticket currencies facilitates modular resource management. A currency

defines an abstraction barrier that locally contains intra-currency fluctuations such as inflation.

The currency abstraction can be used to flexibly isolate or group users, tasks, and threads.

Figure 5-8 plots the progress of five tasks executing the Dhrystone benchmark. Currencies�
and � have identical funding. Tasks

� �
and

�
� have allocations of

�
� � �

�
and ��� � �

�
,

respectively. Tasks � �
and � � have allocations of

�
� � � � and ��� � � � , respectively. Halfway

through the experiment, a new task, � � , is started with an allocation of � ��� � � . Although this

inflates the total number of tickets denominated in currency � from 300 to 600, there is no

effect on tasks in currency
�

. The aggregate iteration ratio of
�

tasks to � tasks is 1.01 : 1

before � � is started, and 1.00 : 1 after � � is started. The slopes for the individual tasks indicate

that
� �

and
�
� are not affected by task � � , while � �

and � � are slowed to approximately

half their original rates, corresponding to the factor of two inflation caused by � � .

System Overhead

The core lottery scheduling mechanism is extremely lightweight; a tree-based lottery need

only generate a random number and perform � � ��� additions and comparisons to select a

winner among �
� clients. Thus, low-overhead lottery scheduling is possible in systems with a

scheduling granularity as small as a thousand RISC instructions.
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Figure 5-8: Currencies Insulate Loads. Currencies � and � are identically funded. Tasks � �
and � � are respectively allocated tickets worth ����� � � and �
��� � � . Tasks � � and � � are respectively
allocated tickets worth ����� � � and �
��� � � . Halfway through the experiment, task ��� is started with an
allocation of � ��� � � . The resulting inflation is locally contained within currency � , and affects neither
the progress of tasks in currency � , nor the aggregate � : � progress ratio.
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The prototype lottery scheduler for Mach, which includes full support for currencies, has

not been optimized. For example, the prototype uses a straightforward list-based lottery and a

simple scheme for converting ticket amounts into base units. Code is also executed to update

metrics and check assertions at runtime, and a significant amount of additional overhead is

incurred by remaining compatible with the existing Mach scheduling framework.

A simple microbenchmark was developed to force continuous scheduling allocations by

yielding the processor in a tight loop via the Mach thread switch() system trap. The average

cost per allocation was determined by dividing a relatively large aggregate runtime, measured

with gettimeofday(), by the number of yields. Three separate runs were performed for each

experiment, which consisted of executing one or more tasks that each invoked one million

scheduling operations.

Under the unmodified Mach kernel, the average allocation costs for one, two, four, and

eight concurrent microbenchmark tasks were 32, 43, 42, and 41 microseconds, respectively.

The same experiment using the prototype lottery scheduler revealed costs of 122, 170, 188,

and 216 microseconds, respectively. Thus, the unoptimized lottery scheduler is approximately

four to five times slower than the default timesharing scheduler. However, this inefficiency

should be interpreted as the result of a naive implementation, and not as an inherent aspect

of lottery scheduling. Since numerous optimizations could be made to the list-based lottery,

simple currency conversion scheme, and other untuned aspects of the implementation, efficient

lottery scheduling does not pose any challenging problems.

To assess the impact on overall system overhead, identical executables and workloads were

executed under both the prototype kernel and the unmodified Mach kernel; three separate

runs were performed for each experiment. Overall, the overhead measured using the prototype

lottery scheduler is comparable to that measured for the standard Mach timesharing policy. The

first experiment consisted of three Dhrystone benchmark tasks running concurrently for 200

seconds. Compared to unmodified Mach, 2.7% fewer iterations were executed under lottery

scheduling. For the same experiment with eight tasks, lottery scheduling was observed to be

0.8% slower. However, the standard deviations across individual runs for unmodified Mach

were comparable to the absolute differences observed between the kernels. Thus, the measured

differences are not very significant.

A performance test was also run using the multithreaded “database” server that was used

for the earlier client-server experiment shown in Figure 5-6. Five client tasks each performed

20 queries, and the time between the start of the first query and the completion of the last query

was measured. This application was found to execute 1.7% faster under lottery scheduling. For

unmodified Mach, the average run time was 1155.5 seconds;with lottery scheduling, the average

time was 1135.5 seconds. The standard deviations across runs for this experiment were less
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than 0.1% of the averages, indicating that the small measured differences are significant. Under

unmodified Mach, threads with equal priority are run round-robin; with lottery scheduling, it

is possible for a thread to win several lotteries in a row. This ordering difference may affect

locality, resulting in slightly improved cache and TLB behavior under lottery scheduling.

5.2 Prototype Stride Scheduler

The prototype scheduler described in this section was implemented to test the performance

of the basic stride scheduling approach in a real system. The prototype was implemented by

modifying the Linux 1.1.50 kernel [Bok95] on a 25MHz i486-based IBM Thinkpad 350C. Due

to time constraints, support was not implemented for higher-level abstractions such as ticket

transfers and currencies. As predicted by the simulations and analysis presented in Chapter 4,

the throughput accuracy of the prototype stride scheduler is significantly better than that for the

prototype lottery scheduler described in Section 5.1.

5.2.1 Implementation

This section describes various implementation aspects of the stride scheduling prototype. I

primarily changed the Linux kernel code that handles process scheduling, switching from a

conventional priority scheduler to a stride-based algorithm with a standard scheduling quantum

of 100 milliseconds. Fewer than 300 lines of source code were added or modified to implement

the prototype scheduler. The actual implementation is nearly identical to the dynamic stride

scheduling code listed in Figures 3-13 and 3-15.

Kernel Interface

Tickets are simply represented by integer values associated with each Linux process. Two new

system calls permit ticket allocations to be specified or queried for any process. Higher-level

abstractions such as ticket transfers and currencies are not implemented. However, full support

is provided for dynamic client participation, dynamic ticket modifications, and nonuniform

quanta.

Fixed-Point Stride Representation

Consistent with the implementation strategy described in Section 3.3, a fixed-point integer

representation is used for strides. The precision of relative rates that can be achieved with

such a representation depends on both the value of stride � and the relative ratios of client ticket
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allocations. For example, with stride � = � ��� , and a maximum ticket allocation of �
� � tickets,

ratios are represented with 10 bits of precision. Thus, ratios close to unity resulting from

allocations that differ by only one part per thousand, such as 1001 : 1000, can be supported.

Because stride � is a large integer, stride values will also be large for clients with small

allocations. Since pass values are monotonically increasing, they will eventually overflow the

machine word size after a large number of allocations. If 64-bit integers are used to represent

strides, this is not a practical problem. For example, with stride � = � ��� and a worst-case client

tickets = 1, approximately � � � allocations can be performed before an overflow occurs. At

one allocation per millisecond, centuries of real time would elapse before the overflow. The

prototype stride scheduler makes use of the 64-bit “long long” integer type provided by the

GNU C compiler.

5.2.2 Experiments

Several experiments were conducted to evaluate the effectiveness of the prototype stride sched-

uler. To facilitate comparisons with the data presented for the prototype lottery scheduler in

Section 5.1.2, the same (or similar) applications are used with the prototype stride scheduler.

These applications include a compute-bound integer arithmetic benchmark, a Monte-Carlo

numerical integration program, and competing MPEG video viewers.

Throughput Accuracy

The first experiment tests the accuracy with which the prototype can control the relative

execution rate of computations. The Dhrystone benchmark used for the corresponding exper-

iment under lottery scheduling is floating-point intensive. Unfortunately, the platform used

for stride scheduling lacks hardware support for floating-point arithmetic; all floating-point

operations are trapped and emulated in the Linux kernel. The integer-based arith benchmark

[Byt91] is used instead of Dhrystone to ensure consistent application-level measurements.

Each point plotted in Figure 5-9 indicates the relative execution rate that was observed

for two processes running the compute-bound arith integer arithmetic benchmark. Three

thirty-second runs were executed for each integral ratio between one and ten. In all cases,

the observed ratios are within 1% of the ideal. Experiments involving higher ratios yielded

similar results. For example, the observed ratio for a 20 : 1 allocation ranged from 19.94 to

20.04, and the observed ratio for a 50 : 1 allocation ranged from 49.93 to 50.44. The prototype

stride scheduler clearly achieves much better throughput accuracy than the prototype lottery

scheduler, which exhibited a worst-case error of approximately 34% for the same experiment,

as shown in Figure 5-3.
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Figure 5-10: Fairness Over Time. Two processes executing the compute-bound arith benchmark
with a 3 : 1 ticket allocation. Averaged over the entire run, the two processes executed 2409.18 and
802.89 iterations per second, for an actual ratio of 3.001:1.
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Figure 5-11: Monte-Carlo Execution Rates. Three identical Monte-Carlo integrations are started
two minutes apart. Each task periodically sets its ticket value to be proportional to the square of its
relative error, resulting in the convergent behavior. The “bumps” in the curves mirror the decreasing
slopes of new tasks that quickly reduce their error.

The next experiment examines the scheduler’s behavior over shorter time intervals. Fig-

ure 5-10 plots average iteration counts over a series of 2-second time windows during a single

60 second execution with a 3 : 1 allocation. The two processes remain close to their allocated

ratios throughout the experiment. Note that the use of a 10 millisecond time quantum instead

of the scheduler’s 100 millisecond quantum would result in the same degree of fairness over a

series of 200 millisecond time windows. This experiment also demonstrates that stride schedul-

ing is significantly more accurate than lottery scheduling over short time intervals. Comparison

with Figure 5-4 reveals that the variability exhibited over 8-second time windows under lottery

scheduling is considerably higher than that measured over shorter 2-second windows under

stride scheduling.

Flexible Control

Figure 5-11 repeats the concurrent Monte-Carlo integrationexperiment described for lottery

scheduling in Section 5.1.2. The Monte-Carlo code makes extensive use of floating-point

arithmetic, and the platform used for stride scheduling emulates floating-point operations

in software. As a result, this application runs more than 100 times as slowly under stride

scheduling. Nevertheless, the general shapes of the curves depicted in Figure 5-11 for stride

scheduling are nearly identical to those shown in Figure 5-5 for lottery scheduling. Although the

absolute per-process progress differs by more than two orders of magnitude across the platforms,

their relative progress rates are similar because the Monte-Carlo error is still proportional to
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Figure 5-12: MPEG Video Rates. Three MPEG viewers are given an initial � : � : � = 3 : 2 : 1
allocation, which is changed to 3 : 1 : 2 at the time indicated by the arrow. The total number of frames
displayed is plotted for each viewer. The actual frame rate ratios were 3.05 : 2.02 : 1 and 3.02 : 1 : 1.99,
respectively.

� � � � , where � is the number of trials completed. Since proportional-share scheduling specifies

relative computation rates, the qualitative behavior for this experiment is largely time-scale

invariant.

Multimedia Applications

The concurrent MPEG video viewer experiment described for lottery scheduling in Sec-

tion 5.1.2 was also repeated under stride scheduling. Figure 5-12 depicts the execution of three

mpeg play video viewers (
�

, � , and � ) displaying the same music video. An
�

: � : � =

3 : 2 : 1 ticket ratio was initially specified, and was changed to 3 : 1 : 2 at the time indicated by

the arrow. The observed per-second frame rates were initially 4.18 : 2.77 : 1.37 (3.05 : 2.02 : 1

ratio), and then 4.19 : 1.39 : 2.77 (3.02 : 1.00 : 1.99 ratio) after the change.

Unlike the results for lottery scheduling, which were distorted by round-robin X server

processing, the observed ratios match the intended allocations extremely well. The explanation

for this difference is that compared to Mach, the X server requires a much smaller fraction

of system resources under Linux. For example, mpeg play is able to use a shared-memory

extension under Linux that is not supported by Mach, significantly reducing overhead. The

XFree86 server used with Linux is also optimized for PC video cards, making it much faster

than the generic MIT X server used under Mach with a low-end workstation display.
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System Overhead

A simple microbenchmark was developed to force continuous scheduling allocations by yielding

the processor in a tight loop. A new yield() system call was added to Linux by trivially modifying

the existing pause() system call. The average cost per allocation was determined by dividing

a relatively large aggregate runtime, measured with gettimeofday(), by the number of yields.

Three separate runs were performed for each experiment, which consisted of executing one or

more tasks that each invoked one million scheduling operations.

Under the standard Linux kernel, the average allocation costs for one, two, four, and eight

concurrent microbenchmark tasks were 160, 161, 162, and 171 microseconds, respectively.

The same experiment using the prototype stride scheduler revealed costs of 181, 209, 224, and

253 microseconds, respectively. Thus, the prototype stride scheduler is approximately 15% to

50% slower than the default Linux scheduler. However, most of this additional overhead could

be eliminated by optimizing the stride scheduler implementation.

Neither the standard Linux scheduler nor the prototype stride scheduler is particularly

efficient. For example, the Linux scheduler performs a linear scan of all processes to find the

one with the highest priority. The stride scheduler prototype also performs a linear scan to find

the process with the minimum pass; an ������ �
��� time implementation would have required

substantial changes to existing kernel code.

The stride scheduler prototype also incurs additional overhead by checking each process to

identify state changes (e.g., from runnable to waiting) during every allocation. This inefficient

approach provided a simple solution to the problem of updating stride scheduling state when

the set of active processes dynamically changes. A better solution would be to change Linux

to use a common routine whenever process states are changed. Unfortunately, inline updates

occur in numerous sections of kernel and device driver code.

Several additional performance tests were executed to assess the overall overhead imposed

on the system by the prototype stride scheduler. The results indicate that the system performance

measured using the prototype is comparable to that measured for the standard Linux process

scheduler. Compared to unmodified Linux, groups of one, two, four, and eight concurrent

arith benchmark processes each completed fewer iterations under stride scheduling, but the

difference was always less than 0.2%.

111



112



Chapter 6

Scheduling Diverse Resources

Proportional-share schedulers can be used to manage many diverse resources. In general, the

mechanisms described in Chapter 3 can be used to allocate resources wherever queuing is

necessary for resource access. This chapter presents extensions to these basic mechanisms,

and introduces several novel resource-specific algorithms for proportional-share scheduling.

The first section explores proportional-share mechanisms designed to schedule access to syn-

chronization resources, such as locks. The next section introduces both randomized and de-

terministic algorithms for dynamically managing space-shared resources. Proportional-share

scheduling of disk bandwidth is examined in the following section. Finally, the last section

discusses issues associated with simultaneously scheduling multiple resources.

6.1 Synchronization Resources

Contention due to synchronization can substantially affect computation rates. This section

shows that significant distortions of intended throughput rates can occur when a proportional-

share processor scheduler is combined with simple first-come, first-served processing of locking

requests. Proportional-share techniques are proposed for simultaneously managing both lock

accesses and processor time. Simulation results are presented that demonstrate successful

control over client computation rates, despite competition for locks.

6.1.1 Mechanisms

The same proportional-share mechanisms used to allocate processor time can also be used to

control lock access. Either randomized lottery scheduling or deterministic stride scheduling

can be used, although stride scheduling is generally preferable since it is more accurate.
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Regardless of the underlying algorithm, a straightforward cross-application of proportional-

share scheduling to locks is insufficient for achieving specified throughput rates.

Simple proportional-share lock scheduling exhibits a problem that is very similar to the

priority inversion problem associated with priority scheduling [LR80, SRL90]. A simple case

of priority inversion can occur with three clients: a low-priority client that holds a lock needed

by a high-priority client, and a medium-priority client that does not need the lock to execute.

In this case, the high-priority client must wait for the low-priority client to release the lock, but

the medium-priority client prevents the low-priority client from making progress. The duration

of this inversion in priorities can be unbounded. Priority-inheritance protocols have been

developed to prevent priority inversion by effectively executing the lock owner at the maximum

priority of all the clients waiting to acquire the lock [SRL90].

In the context of proportional-share scheduling,unbounded priority inversion is not possible,

since all clients with non-zero ticket allocations are guaranteed to make progress. However, a

low-ticket client that holds a lock needed by a high-ticket client can still execute very slowly, due

to competition with other clients for the processor. This distortion can cause ticket inversion,

resulting in client throughput rates that are not proportional to their ticket allocations.

Ticket inheritance is a partial solution to ticket inversion for proportional-share schedulers

that is similar to priority inheritance for priority schedulers. A client that owns a lock temporarily

inherits the sum of the tickets associated with all clients waiting to acquire the lock. Ticket

inheritance is an incomplete solution to ticket inversion because it introduces its own distortion

by favoring lock owners. An extension that compensates for this problem will be presented

after a discussion of the basic approach.

Ticket inheritance can be implemented in a straightforward manner using ticket transfers

and currencies. Each proportionally-scheduled lock has an associated lock currency and an

inheritance ticket issued in that currency. All clients that are blocked waiting to acquire the

lock perform ticket transfers to fund the lock currency. The lock transfers its inheritance ticket

to the client which currently holds the lock. The net effect of these transfers is that a client

which acquires the lock executes with its own funding plus the funding of all waiting clients, as

depicted in Figure 6-1. This avoids the ticket inversion problem, since a lock owner with little

funding will execute more quickly while a highly-funded client remains blocked on the lock.

When a client releases a lock, a proportional-share allocation is performed among the

waiting clients to select the next lock owner. The client then moves the lock inheritance ticket

to the new owner, and yields the processor. The next client to execute may be the selected

waiter or some other client that does not need the lock; the normal processor scheduler will

choose fairly based on relative funding.
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Figure 6-1: Lock Ticket Inheritance. Clients c3, c7, and c8 are waiting to acquire a lock, and have
transferred their funding to the lock currency. Client c2 holds the lock, and inherits the aggregate waiter
funding through the backing ticket denominated in the lock currency. Instead of showing the backing
tickets associated with each client, shading is used to indicate relative funding levels.
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Proportional-share scheduling with ticket inheritance prevents severe distortions in client

throughput rates caused by ticket inversion. Unfortunately, ticket inheritance also introduces

its own distortion by favoring clients that hold locks. In fact, any client can effectively boost its

resource share by acquiring a highly-contended lock and holding it for a long time. Moreover,

such clients cannot simply have their lock access preempted or terminated after exceeding a

predefined quantum, because they may leave shared data in an inconsistent state. An exception

is systems based on atomic transactions [Tan92], which can abort misbehaving clients safely.

A more general solution
�

is to require that each client effectively repay any inheritance that

it receives. With an underlying stride-based scheduler, this can be implemented by maintaining

an additional repay state variable with each client. During each incremental update of a client’s

pass value, repay is advanced by the difference between the actual increment (based on the

current stride that includes inherited tickets) and the increment that would have occurred without

the inherited tickets. When the client releases the lock, its pass value is advanced by repay, and

repay is reset to zero. With an underlying lottery-based scheduler, a similar approach could be

implemented using negative compensation tickets. Inheritance repayment implicitly assumes

that a quantum now is equivalent to a quantum later. Thus, it will be only approximately correct

when dynamic contention for resources causes the total number of tickets competing for each

resource to vary over time.

Another implementation issue is support for dynamic operations and nonuniform lock

quanta. The standard techniques described in Chapter 3 can be applied, but additional per-

client state is required to hold scheduling information for each lock that it may use. While the

state required for each lock is minimal, the worst-case aggregate overhead could be large in a

system with many locks. Since lock usage is likely to exhibit locality, one possible optimization

is to associate a small, fixed-size cache of scheduling state with each client (or alternatively,

with each lock).

The same basic technique used for locks can also be applied to other synchronization

resources, such as condition variables [LR80, Bir89, HJT
�

93]. In the case of a condition

variable, a currency is associated with the condition, and clients that are blocked waiting on the

condition fund the condition currency. Unlike a lock, which has a single owner, there may be

several clients capable of signalling the condition. Any number of inheritance tickets can be

issued in the condition currency and used to fund these clients. Clients can be funded equally,

or preferentially using application-specific knowledge.

�

A malicious or malfunctioning client can still hold a lock indefinitely, but this is a general correctness issue
outside the scope of proportional-share resource management.
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6.1.2 Experiments

Figure 6-2 plots throughput performance results for lock scheduling with three different client

configurations. The data depicted is representative of simulation results over a wide range of

client ticket allocations and locking rates. Stride scheduling is used to allocate processor time,

combined with a variety of different lock scheduling techniques. IDEAL scheduling represents

perfect proportional-share behavior without locking. FIFO scheduling processes lock requests

in a first-come, first-served order. STRIDE scheduling implements simple proportional-share

lock scheduling. INHERIT denotes stride lock scheduling with ticket inheritance. REPAY

refers to stride lock scheduling with both ticket inheritance and repayment.

Results for a simple ticket inversion scenario are graphed in Figure 6-2(a). Three clients

with a 10 : 5 : 1 ticket allocation compete for processor time. The 10-ticket and 1-ticket clients

also compete for a single lock by repeatedly executing a simple loop: acquire the lock, hold

the lock while computing for two quanta (the hold time), release the lock, and compute without

the lock for one quantum (the think time). FIFO lock scheduling demonstrates ticket inversion,

producing a distorted 4.01 : 5.00 : 1 throughput ratio since the 5-ticket client never waits for

the lock. The STRIDE lock scheduling results are identical to those for FIFO, since with

only two clients competing for the lock, the queue length never exceeds one. INHERIT

avoids ticket inversion, yielding a 7.26 : 3.76 : 1 throughput ratio. However, the 1-ticket client

benefits disproportionately from ticket inheritance, decreasing the effective shares of the other

two clients. Finally, REPAY compensates for ticket inheritance, and achieves a reasonable

10.84 : 5.52 : 1 throughput ratio.

Figure 6-2(b) plots the results for a similar experiment involving additional clients and

longer lock hold times. Five clients with a 10 : 5 : 5 : 2 : 1 ticket allocation compete for processor

time. The first (10-ticket), second (5-ticket), and fifth (1-ticket) clients also compete for

a single lock with a think time of one quantum and a hold time of five quanta. For this

experiment, FIFO lock scheduling results in a severe distortion of the specified throughput

rates, producing a 1.15 : 1.14 : 5.44 : 2.17 : 1 ratio. The clients competing for the lock have

nearly identical throughput values, caused by the in-order processing of locking requests.

Moreover, the absolute throughput levels for the non-locking clients are more than twice those

specified as IDEAL, demonstrating ticket inversion. STRIDE lock scheduling also exhibits

inversion; the non-locking clients have absolute throughput levels more than 50% higher than

intended. INHERIT avoids ticket inversion, achieving a 5.91 : 4.90 : 3.69 : 1.48 : 1 throughput

ratio. As expected, the distortion introduced by ticket inheritance favors the locking clients

with small ticket allocations. REPAY compensates for this bias, yielding a more reasonable

12.00 : 5.97 : 6.92 : 2.77 : 1 throughput ratio.
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a) (c) 13:7:5:3:1 ratio; think=1,2,-,1,5; hold=2,1,-,5,1 (mean)

Figure 6-2: Lock Scheduling Performance. Simulation results for stride-based processor schedul-
ing combined with various lock scheduling techniques: IDEAL – perfect proportional-share behavior,
FIFO – first-come first-serve locking, STRIDE – stride-based locking, INHERIT – stride locking with
ticket inheritance, REPAY – stride locking with ticket inheritance and repayment. Each experiment
involves a single lock, and lasts for 10000 processor quanta. Each bar represents a single client, and
clients are arranged from left to right in order of decreasing ticket allocations.
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To examine the behavior of the lock scheduling algorithms with more dynamic interleaving,

Figure 6-2(c) presents simulation results for clients with exponentially-distributed hold times.

Five clients with a 13 : 7 : 5 : 3 : 1 ticket allocation compete for processor time. All clients

except the 5-ticket client also compete for a single lock. The think times for these clients are

1, 2, 1, and 5 quanta, respectively. The mean values for their exponentially-distributed hold

times are 2, 1, 5, and 1 quanta, respectively. The 4.04 : 2.30 : 6.44 : 3.39 : 1 throughput ratio

achieved by FIFO lock scheduling bears little resemblance to the intended ratio. STRIDE

lock scheduling shows very little improvement over FIFO. INHERIT produces a substantially

better 10.96 : 5.79 : 4.79 : 5.26 : 1 ratio, although it still introduces some undesirable distortion.

Finally, REPAY yields the most accurate results with a 12.58 : 6.55 : 5.26 : 2.46 : 1 throughput

ratio.

The simulation results presented in this section demonstrate that the proportional-share

locking scheme with ticket inheritance and repayment is very effective at achieving specified

computation rates, despite contention for locks. However, this approach is not perfect; dynamic

changes in resource contention limit its accuracy. Also, the implementation overhead associated

with ticket inheritance and repayment may limit its usefulness to coarse-grained locks or systems

that suffer from significant problems with ticket inversion.

6.2 Space-Shared Resources

The proportional-share mechanisms presented in Chapter 3 are designed to allocate indivisible

time-shared resources, such as an entire processor. This section introduces proportional-share

mechanisms that are useful for allocating divisible space-shared resources. Examples of space-

shared resources include blocks in a filesystem buffer cache, resident virtual memory pages,

and processing nodes in a multiprocessor.

One obvious approach is to statically divide a resource into fixed regions with sizes that

are proportional to client ticket allocations. However, this approach is not suitable for dynamic

environments. In general, the number of clients competing for a resource will vary over time,

and the resource needs of each client will also change dynamically.

Dynamic space-sharing techniques are typically based on resource revocation. When one

client demands more of a space-shared resource, a replacement algorithm is invoked to select a

victim client that is forced to relinquish some of the space that it was previously allocated. This

section introduces two revocation-based algorithms: probabilistic inverse lottery scheduling,

and a deterministic minimum-funding revocation scheme.
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6.2.1 Inverse Lottery Scheduling

An inverse lottery is a variant of a lottery that selects a “loser” instead of a “winner”. Inverse

lottery scheduling is similar to normal lottery scheduling, except that inverse probabilities are

used. The basic idea is that tickets resist selection; the more tickets that a client holds, the less

likely it is to be selected to lose a resource unit. Current resource consumption levels must also

be considered. Thus, the probability of selecting a client should depend on its ticket allocation

as well as the fraction of the resource that it has already been allocated. �

Basic Mechanism

The inverse lottery mechanism is most easily explained in a bottom-up manner. Assume that

each resource unit is owned by some client, and that clients associate tickets with each resource

unit that they own. A resource unit’s ticket allocation is inverted to become a selection value:

a resource unit with � tickets has an selection value of
� �	� . A lottery is conducted to select

a resource unit to be revoked, where the probability that a unit will be selected is directly

proportional to its selection value.

For example, consider a system containing three equal-size blocks of memory
�

, � , and

� , with the relative ticket allocation
�

: � : � = 10 : 5 : 1. Inverting each of these original

ticket amounts yields a relative selection value ratio of
�

� � :
�

� :
�

� = 1 : 2 : 10. When a lottery is

conducted using these selection values, the probabilities of choosing blocks
�

, � , and � are
�

�

�
,
�

�

�
, and

� �
�

�
, respectively.

Aggregation

Since a real system may contain many thousands of resource units, it would be extremely

inefficient to conduct inverse lotteries at the level of individual resource units. By aggregating

ticket allocations over groups of resource units, the number of competing entities can be sharply

reduced. For example, aggregate ticket values can be computed for each client, and inverse

lotteries can be conducted among clients. A client selected by an inverse lottery could then

internally choose which of its resource units to surrender.

At first glance, it may seem that a simple ticket summation or averaging technique would

suffice for aggregating ticket amounts over multiple resource units. However, since inverse

lotteries use inverted ticket values, this intuition is incorrect. In general, an aggregate ticket

value � must be produced from two individual ticket values � � and � � , such that
�� � �� � � �� � .

�

I first introduced the idea of an inverse lottery in [WW94]. Although the basic concept was presented correctly,
the expression given for computing inverted probabilities was incorrect for more than two clients.
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This requirement directly � results in the aggregation rule �� � � � �� � � � � .
For example, let’s apply the aggregation rule to our earlier scenario involving three memory

blocks with a ticket allocation of
�

: � : � = 10 : 5 : 1. We will aggregate blocks � and � into

group
�

, which has an equivalent ticket value of �����
�

�

�
� �

�
�

� � � � �
� . Thus, the resulting system

consists of two groups of blocks with a ticket allocation of
�

:
�

=
� �

� :
�
� . After inverting these

amounts, we have a selection value ratio of
�

� � :
�

� = 1 : 12. When a lottery is conducted using

these selection values, the probability of choosing
�

is
�

�

�
, as before, and the probability of

choosing
�

is
� �
�

�
. When group

�
is selected, another inverse lottery is held to choose between

� and � . Since their original ticket ratio is � : � = 5 : 1, their selection value ratio is
�

� :
�

� =

1 : 5. Thus, the probability of selecting � in the nested lottery is
�

� ; the probability of selecting

� is
�
� . Calculating the overall selection probabilities across both lotteries, the probabilities of

choosing blocks
�

, � , and � are
�

�

�
,

�

� �
� �
�

�
� �

�

�
, and

�
� �

� �
�

�
� � �

�

�
, respectively. Note that

these are the same values obtained in the original example without aggregation.

One powerful application of this technique is to hierarchically aggregate a large number of

resource units using a tree structure. A tree can be constructed in which each leaf represents

an individual resource unit, and each internal node represents the aggregate ticket value for all

of the leaves that it covers. Revocation is performed by tracing a path from the root to a leaf,

holding an inverse lottery at each level to select which child to follow. Hierarchical aggregation

permits revocations and dynamic modifications to be performed efficiently in ������ � � time,

where � is the total number of resource units.

Another useful application of aggregation is to compute an equivalent ticket value for a

client that allocates a total of � tickets to � identical resource units. In this case, each individual

resource unit has an allocation of ��� � tickets. Repeated application of the aggregation rule

yields an equivalent client ticket value of ��� � � . Thus, a client’s resistance to being chosen

as a victim depends on both its ticket allocation and its current resource consumption. The

probability that a client will be selected increases quickly as it consumes more resources, but

decreases as it is allocated more tickets.

Experiments

A simple simulator was constructed to investigate the behavior of inverse lotteries. Given

an initial allocation of resource units to clients, together with current ticket allocations, how

does the overall allocation of resources evolve over time? Ideally, resource allocations should

	 I originally arrived at this rule via an analogy to parallel resistors in electrical circuits. Resource units are
analogous to resistors in parallel, ticket allocations are analogous to resistor values, and selection probabilities
are analogous to current flows. Thus, the aggregation of tickets for inverse lotteries follows the same rule used to
aggregate parallel resistances in electrical circuits: � ��� � � �
	��	��	�����	�� .
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Figure 6-3: Inverse Lottery Expansion Effect. Two clients, 2 : 1 ticket ratio, 1 : 2 allocation rate
ratio, starting with a 5 : 1 resource allocation. (a) No limits on client expansion. (b) Client expansion is
limited to its proportional share as defined by the current ticket ratio.

converge rapidly toward the proportional shares defined by client ticket ratios, regardless of the

initial allocation.

Early simulations revealed an interesting problem. If one client issues allocation requests

at a faster rate than other clients, it can consume a disproportionate share of the resource. This

is because a client always has a non-zero probability of successfully obtaining a resource unit

from some other client. Figure 6-3(a) illustrates this problem for a pair of clients with a 2 : 1

ticket ratio, starting from an initial 5 : 1 resource allocation. The second client issues allocation

requests at twice the rate of the first, causing a substantial distortion in the resulting resource

allocation.

In order to eliminate this problem, an additional constraint was needed to limit client

expansion rates. Expansion is limited by explicitly preventing each client from using more

than its proportional share of the resource, as defined by the current ticket ratio. This rule

is only enforced when there are no idle resource units; clients are always free to consume

unused resources. Figure 6-3(b) demonstrates the effect of imposing such expansion limits.

The modified inverse lottery converges to the specified proportional shares, regardless of the

differences in client allocation rates.

Figure 6-4 presents simulation data for two additional inverse lottery scheduling scenarios.

Figure 6-4(a) plots the evolution of resource allocations for three clients with a 3 : 2 : 1 ticket

ratio, which all start with equal resource allocations. All clients issue allocation requests at the

same rate, and their resource shares converge to the specified levels after approximately 650

allocations. Figure 6-4(b) plots resource allocations over time for two clients with a 2 : 1 ticket
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Figure 6-4: Inverse Lottery Scheduling. (a) Three clients, 3 : 2 : 1 ticket ratio, identical allocation
rates, starting with equal resource allocations. (b) Two clients, 2 : 1 ticket ratio, 1 : 2 allocation rate ratio,
starting with reversed resource allocations.

ratio. The clients start with a 1 : 2 resource allocation, the reverse of the specified proportional

shares. The second client issues allocation requests at twice the rate of the first client. The

resource shares converge to the specified levels after a total of about 500 allocations.

6.2.2 Minimum-Funding Revocation

A deterministic alternative to the randomized selection of inverse lotteries is minimum-funding

revocation. Performing a revocation is very simple: a resource unit is revoked from the client

expending the fewest tickets per resource unit, compared with other clients. Unlike inverse

lotteries, no additional mechanism is needed to limit client expansion rates. This is because a

client that rapidly expands will also quickly become the client with the minimum funding per

resource unit.

As its name suggests, minimum-funding revocation also has a clear economic interpretation.

The number of tickets per resource unit can be viewed as a price. Revocation reallocates resource

units away from clients paying a lower price to clients willing to pay a higher price.

Experiments

Figure 6-5 presents simulation data for minimum-funding revocation under the same sce-

narios used to demonstrate inverse lottery scheduling in Figure 6-4. Figure 6-5(a) plots resource

allocations over time for three clients with a 3 : 2 : 1 ticket ratio, starting with equal resource

allocations. All clients issue allocation requests at the same rate, and their resource shares
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Figure 6-5: Minimum Funding Revocation. (a) Three clients, 3 : 2 : 1 ticket ratio, identical
allocation rates, starting with equal resource allocations. (b) Two clients, 2 : 1 ticket ratio, 1 : 2 allocation
rate ratio, starting with reversed resource allocations.

converge to the specified levels after approximately 300 allocations. Compared to inverse

lottery scheduling, convergence occurs more than twice as quickly. However, there is an inter-

esting difference in behavior for the second client, which initially expands its allocation at the

expense of the third client. Once the third client’s allocation has been reduced to near its target

level, the first client continues to expand by revoking the resource units temporarily gained

by the second client. If desired, this behavior could easily be avoided by imposing the same

expansion limitation described for inverse lotteries. Figure 6-5(b) shows resource allocations

over time for two clients with a 2 : 1 ticket ratio. The clients start with a 1 : 2 resource allocation,

the reverse of the specified proportional shares. The second client issues allocation requests

at twice the rate of the first client. The resource shares converge to the specified levels after a

total of about 300 allocations, nearly twice as fast as under inverse lottery scheduling.

6.2.3 Comparison

Both the probabilistic inverse lottery and deterministic minimum-funding revocation mech-

anisms successfully achieve proportional-share allocations for space-shared resources. Both

techniques also exhibit adaptive expansion and contraction of resource consumption as a func-

tion of current ticket allocations. Thus, a client with a constant number of tickets will be able to

increase its resource consumption when overall contention falls, and its resource consumption

will decrease due to revocations when overall contention rises. For example, consider a client

that loses a resource unit due to a revocation. Since its resource consumption has decreased

without a change in its ticket allocation, this client would be less likely to be reselected by
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another inverse lottery. Since its ticket to resource unit ratio has increased, this client would also

be less likely to be reselected by the minimum-funding revocation scheme. Similar reasoning

applies in the opposite direction for expansion.

Overall, minimum-funding revocation is generally preferable to inverse lottery scheduling.

The minimum-funding algorithm is simpler, more efficient, and results in more rapid con-

vergence toward proportional shares. However, the minimum-funding approach does require

complete information about all clients in order to identify the client with the minimum per-unit

funding. In contrast, an inverse lottery may be more appropriate in situations where aggregate

metrics are accessible, but complete information is unavailable. This may be the case for

large-scale parallel or distributed systems in which information is physically distributed and

dynamically changing.

6.3 Disk Scheduling

Conventional disk scheduling algorithms are designed to maximize disk bandwidth utilization

without any consideration for the relative importance of individual requests. This section ex-

amines the problem of providing proportional-share control over disk scheduling while still

achieving high utilization. Such control would be particularly useful for disk-intensive work-

loads. Proportional-share disk scheduling is also desirable when proportional-share control

is provided for filesystem buffer cache space. Otherwise a client with a small buffer cache

allocation could potentially monopolize the disk due to a high buffer cache miss rate.

6.3.1 Mechanisms

Most work on disk scheduling has focused on maximizing aggregate disk throughput. One

common algorithm is shortest-seek first (SSF), which always chooses the request with the

smallest seek distance from the current disk head position [Tan92]. A similar algorithm that

achieves even better throughput by also taking rotational latency into account is shortest access-

time first (STF) [SCO90, JW91]. Since these are greedy policies, they always process the request

with the minimum latency first. As a result, some requests are treated very unfairly in terms

of response time. Worse yet, it is also possible for these policies to exhibit request starvation.

As main memory buffer sizes continue to increase, disk request queues are becoming larger,

exacerbating this problem [SCO90].

A widely-used algorithm that addresses the problem of fairness is SCAN, also known as the

elevator algorithm [CKR72, Tan92]. SCAN orders requests by cylinder number, and proceeds

in one direction, servicing all requests for a given cylinder before advancing to the next one.
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When there are no more outstanding requests in the same direction, SCAN simply reverses

direction. This algorithm is similar to SSF, and generally produces similar results [SCO90].

However, by scanning the entire disk from end to end, SCAN often achieves lower response

time variance that SSF. Nevertheless, SCAN can still exhibit high response times for requests

to cylinders near the extreme ends of the disk.

More recent attempts to optimize disk throughput while avoiding request starvation have

focused on aging techniques, which compute the merit of a request as a function of its true

service cost � and the delay � that has elapsed since the request was issued. For example,

Seltzer, Chen, and Ousterhout recommend using a weighted shortest-time first (WSTF) algo-

rithm [SCO90]. WSTF weights the actual cost � of a disk request by ��� 
 � � ��� , where � is

a parameter that specifies the maximum acceptable delay. This algorithm always processes the

request with the minimum weighted cost. The throughput achieved by WSTF is usually within

a few percent of STF, and the maximum response times that it produces can be dramatically

smaller than those for STF.

Jacobson and Wilkes have proposed a different aging technique called aged shortest access-

time first (ASATF) [JW91]. ASATF calculates the merit of a request as ��� 
 � , where �
is a weighting parameter that is empirically derived by running simulations at high load. The

ASATF algorithm always processes the request with the maximum merit. When �� � , ASATF

is identical to STF; for large � , it approximates FCFS scheduling. For small � , ASATF attains

high throughput that approaches STF, while significantly decreasing maximum response times.

I attempted to achieve proportional-share control over disk bandwidth by experimenting

with a large variety of different disk scheduling schemes. Many approaches that were per-

fectly reasonable in terms of proportional sharing exhibited terrible performance in terms of

throughput. This is because there is a fundamental conflict between the goal of achieving

proportional-share allocations and the goal of maximizing overall disk throughput. A complete

solution to this tension is still an open problem.

Nevertheless, I did develop a simple funded delay cost (FDC) algorithm that roughly

approximates proportional-share scheduling for small ratios. This technique also achieves

reasonable disk throughput performance that is generally better than SCAN and SSF, but lower

than STF. The FDC algorithm computes the merit of each request as ��� � � , where � is the

funding associated with the request, � is the delay since it was issued, and � is the actual cost of

servicing the request. The algorithm processes the request with the maximum merit. The cost

adjustment is analogous to the compensation for nonuniform quantum sizes in proportional-

share processor scheduling. Overall, FDC disk scheduling is essentially a cost-adjusted version

of Fong and Squillante’s time function scheduling (TFS) approach for processor timesharing,

in which process priorities increase linearly with ��� [FS95].
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Figure 6-6: Relative Throughput Accuracy. The disk throughput ratio observed under the FDC
scheduling policy is plotted for each integral ticket allocation ratio between one and ten. The gray line
indicates the ideal where the two ratios are identical. Each experiment processed a total of ten thousand
requests. (a) Queue containing 100 requests. (b) Queue containing 1000 requests.

6.3.2 Experiments

Quantitative experiments were conducted to test the proportional-share control offered by the

FDC disk scheduling algorithm, as well as its throughput and response-time characteristics

relative to other disk scheduling policies. To perform these experiments, I extended the disk

simulator that Seltzer et al. developed to evaluate WSTF, which simulates a Fujitsu M2361A

Eagle disk drive [SCO90]. This simulator maintains a fixed-size queue of requests to random

locations that are uniformly spread across the disk surface. As soon as one request is serviced,

another is immediately generated to take its place. To test the proportional-share behavior

of the FDC algorithm, ticket allocations are associated with every request. After a request is

serviced, the new request that replaces it in the queue is given an identical ticket allocation, so

that the overall distribution of tickets to requests remains constant.

The first set of experiments, shown in Figure 6-6, tests the ability of the FDC algorithm

to control the relative service rates of requests. Each point plotted in Figure 6-6 indicates

the relative throughput rate that was observed for two classes of disk requests. Figure 6-6(a)

displays simulation results for servicing ten thousand requests with a queue length of 100,

for each integral allocation ratio between one and ten. Figure 6-6(b) presents similar data for

a longer queue with 1000 requests. For small ticket ratios, the observed throughput ratio is

reasonably close to the allocated ratio. However, throughput accuracy diverges significantly

from the ideal for large ratios and queue lengths. For example, a 10 : 1 allocation produces a

127



FCFS SCAN SSF STF WSTF FDC1 FDC10
0

50

100

150
T

hr
ou

gh
pu

t 
(r

eq
ue

st
s/

se
c)

(a) Queue Length 100

FCFS SCAN SSF STF WSTF FDC1 FDC10
0

50

100

150
(b) Queue Length 1000

Figure 6-7: Disk Scheduling Throughput. Throughput performance for various disk scheduling
techniques: FCFS – first-come first-serve, SCAN – elevator algorithm, SSF – shortest seek first, STF –
shortest time first, WSTF – weighted shortest time first ( � = 30 sec.), FDC1 – funded delay cost with
a 1 : 1 ratio, FDC10 – funded delay cost with a 10 : 1 ratio. Each experiment processed a total of ten
thousand requests. (a) Queue containing 100 requests. (b) Queue containing 1000 requests.

6.61 : 1 throughput ratio for a queue length of 100, and a 5.68 : 1 ratio for a queue with 1000

requests.

Figure 6-7 shows the relative throughput performance of the various disk scheduling al-

gorithms. Figure 6-7(a) graphs throughput achieved for a queue length of 100 requests. The

best performance is displayed by WSTF, which marginally exceeds STF at 86.6 requests per

second. The results for FDC ranged from 64.9 for a 10 : 1 ratio to 69.9 for a 1 : 1 ratio. The FDC

algorithm outperforms SCAN and SSF, but its throughput is still considerably lower than STF.

Figure 6-7(b) plots similar data for a queue length of 1000 requests. The larger queue length

provides more opportunities for optimizing disk head motion, improving throughput perfor-

mance for all of the disk scheduling algorithms except FCFS. For this set of experiments, STF

displays the best performance, marginally outperforming WSTF at 126.1 requests per second.

The results for FDC ranged from 97.5 for a 10 : 1 ratio to 105.2 for a 1 : 1 ratio. As expected,

FDC achieves higher aggregate throughput than SCAN and SSF, but does not perform as well

as STF.

Another important performance metric is response time, plotted in Figure 6-8. Black bars

are used to present average response times, and gray bars are used for maximum response times.

Figure 6-8(a) graphs response times for a queue length of 100 requests, while Figure 6-8(b)

depicts the same metrics for a larger queue with 1000 requests. The maximum and average

response times for FCFS are nearly identical, since requests are processed in the order that
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Figure 6-8: Disk Scheduling Response Times. Average (black) and maximum (gray) response
times for various disk scheduling techniques: FCFS – first-come first-serve, SCAN – elevator algorithm,
SSF – shortest seek first, STF – shortest time first, WSTF – weighted shortest time first ( � = 30 sec.),
FDC2 – funded delay cost with a 2 (left) : 1 (right) ratio, FDC5 – funded delay cost with a 5 (left) : 1
(right) ratio. Each experiment processed a total of ten thousand requests. (a) Queue containing 100
requests. (b) Queue containing 1000 requests.

they are issued. As expected, the greedy SSF and STF algorithms exhibit low average response

times, but very high maximum response times. The SCAN algorithm results in average response

times that are comparable to SSF. SCAN produces maximum response times that are somewhat

lower than SSF for the smaller queue, but slightly higher than SSF for the larger queue. In

contrast, WSTF achieves average response times that are comparable to STF, while limiting

maximum response times to a fraction of those for STF. Since the maximum delay parameter

� is set to 30 seconds for WSTF, the reduction in maximum response time is more dramatic

in Figure 6-8(b), which contains values as high as 75 seconds, while all of the response times

in Figure 6-8(a) are below 12 seconds.

The FDC algorithm produces different response time characteristics for different ticket

allocations. The bars labelled FDC2 correspond to a 2 : 1 ticket allocation; FDC5 denotes

a 5 : 1 ticket ratio. For both queue lengths, FDC achieves maximum response times for its

high-ticket requests that are significantly lower than those under any of the other scheduling

algorithms. The average response times for these requests are also lower than those under

any other policy, with larger differences for larger ticket allocations. As expected, low-ticket

requests have higher response times than high-ticket requests, since low-ticket requests are

serviced at a slower rate. Nevertheless, the maximum response times for low-ticket requests

are still reasonably small when compared to most other policies. However, the average response
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times for low-ticket requests are typically much higher than average response times under other

policies.

Overall, it is difficult to fully evaluate the performance of the FDC proportional-share

disk scheduling algorithm. FDC sacrifices some aggregate performance in order to give

preferential treatment to requests with high ticket allocations. In many cases, this tradeoff

is extremely beneficial. For example, if high-ticket requests are issued by important, time-

critical applications, then these applications will be accelerated by FDC. Similarly, low-ticket

applications that issue a large number of disk requests are prevented from monopolizing the

disk. A narrow focus on the performance of the disk subsystem ignores important system-level

effects that would require a more extensive, integrated simulator to evaluate. This point is

elaborated by Ganger and Patt, who argue that a system-level model is necessary to evaluate

the overall impact of changes to I/O subsystems [GP93]. Thus, the simple examination of

proportional-share disk scheduling in this section is incomplete. Additional insights could

be gained by replacing the use of synthetic workloads with real applications, and expanding

the isolated disk drive simulation to include system-level simulations of all relevant resources.

Since the proposed FDC algorithm achieves poor throughput accuracy for large ratios,additional

research is also needed to develop improved proportional-share disk scheduling techniques.

6.4 Multiple Resources

The general resource management framework introduced in Chapter 2 provides a basic foun-

dation for managing multiple heterogeneous resources. However, the concurrent management

of diverse resources presents many new challenges. This section discusses several issues

associated with simultaneously managing multiple resources.

6.4.1 Resource Rights

One approach to managing multiple resources is to simply manage each resource as a separate,

independent entity. Resource-specific tickets that are valid only for particular resources can

be assigned to clients. For example, a client could be allocated CPU tickets that represent a

10% share of the processor and distinct RAM tickets that represent a 20% share of memory.

Although this approach is straightforward, it is also cumbersome and inflexible. Constraining

the use of tickets to specific resources is inefficient, since application requirements typically

vary over time. Depending on current contention levels, clients could mutually benefit by

exchanging tickets for different resources. For example, a compute-bound client could improve

its efficiency by trading excess RAM tickets for CPU tickets with a memory-bound client.
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An alternative approach is to allow any ticket to compete for any resource. The uniform

use of tickets to homogeneously represent rights for heterogeneous resources has several ad-

vantages. It eliminates the complexity of maintaining separate ticket types and potentially

redundant currency configurations. It also permits clients to use simple, quantitative compar-

isons when making decisions that involve dynamic tradeoffs between different resources. For

example, a client with knowledge of its own performance characteristics could numerically

compare the marginal cost of shifting tickets away from memory (reducing its share of RAM)

with the marginal benefit of shifting tickets to the processor (increasing its CPU share).

6.4.2 Application Managers

Allowing each client to independently optimize its own performance by making dynamic

resource tradeoffs raises many interesting questions. For example, when does it make sense

to shift funding from one resource to another? How frequently should funding allocations be

reconsidered? Will dynamic resource management reach a stable equilibrium, or will it exhibit

undesirable oscillatory and chaotic behavior?

One way to abstract the evaluation of resource management options is to associate a

separate manager thread with each application. A manager thread could be allocated a small

fixed percentage (e.g., 1%) of an application’s overall funding, causing it to be periodically

scheduled while limiting its overall resource consumption. For space-shared resources, a client

that has resource units revoked could be allowed to execute a short manager code fragment in

order to adjust funding levels.

A complete system would require an operating system structure that provides fine-grained,

application-level control over resource management, such as the flexible exokernel architecture

[EKO95]. Default managers should be supplied for most applications that implement behavior

comparable to traditional operating system policies. Sophisticated applications should be

permitted to override these defaults by defining custom management strategies. The use of

managers provides a structured mechanism that encapsulates dynamic adjustments to resource

funding levels. However, it does not address the more fundamental questions of appropriate

funding strategies and dynamic stability.

6.4.3 System Dynamics

An integrated system that concurrently manages multiple resources is likely to resemble a

computational economy [MD88, HH95a, Wel95]. Tickets are similar to monetary income

streams that can be used to buy resources. The number of tickets competing for a resource
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can be interpreted as its price per unit time. Cost-benefit tradeoffs computed by clients are

analogous to decision-making procedures used by rational economic agents.

Formal models and simulations of computational agents competing for resources have been

shown to display a rich variety of dynamical behavior, including regimes characterized by

fixed points, oscillations, and chaos [HH88, KHH89, SHC95]. Market-based systems designed

to solve real resource allocation problems have also empirically demonstrated diverse system

dynamics. Most market-based algorithms proposed for computational economies use auctions

to determine prices, and have focused on allocating a single resource, such as processor time.

However, auctions can exhibit unexpectedly volatile price dynamics, even in simple single-

resource systems [WHH
�

92]. The proportional-share mechanisms introduced in this thesis

could provide a more stable and efficient substrate for pricing individual time-shared resources

in computational economies.

One of the few existing approaches to the more general problem of simultaneously allocating

multiple resources is Wellman’s Walras system [Wel93, Wel95]. Walras is a market-oriented

programming environment based on the economic concept of general equilibrium [Var84].

Individual agents supply resource preferences in the form of demand curves to auctions that

iteratively compute a general equilibrium. Unfortunately, computing a general equilibrium

can entail substantial overhead. For example, a processor rental economy constructed using

Walras spent approximately ten times as long computing market equilibria as it did executing

processes [Bog94].

Wellman also found it necessary to introduce temporal randomness to avoid undesirable

oscillations resulting from synchronized behavior [Wel93]. This suggests that randomized

techniques such as lottery scheduling may produce more stable behavior than deterministic

alternatives, since randomization tends to prevent persistent pathological states. Another tech-

nique for stabilizing prices is the explicit introduction of speculators [SHC95] or arbitrageurs

[Wel95] that monitor and exploit market inefficiencies, conducting profitable trades that tend

to promote equilibration. A substantial amount of additional research is clearly needed to ex-

plore both theoretical and practical issues associated with the dynamics of managing multiple

computational resources.
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Chapter 7

Related Work

This chapter discusses a wide variety of research related to computational resource manage-

ment. Relevant work is examined from diverse areas including operating systems, processor

scheduling, networking, and artificial intelligence. The following sections examine related

topics in priority scheduling, real-time scheduling, fair-share scheduling, proportional-share

scheduling, microeconomic resource management, and rate-based network flow control.

7.1 Priority Scheduling

Conventional operating systems employ numerical priorities for scheduling processes [Dei90,

Tan92]. A priority scheduler simply grants the processor to the process with the highest priority.

Thus, priorities represent absolute resource rights, since a process with higher priority is given

absolute precedence over a process with lower priority.

The use of static priority values can lead to starvation – a low priority process that is ready

to execute may be blocked indefinitely by higher priority processes. This problem is typically

addressed by allowing priorities to vary dynamically. For example, priority aging is a common

technique that gradually increases the priorities of processes that have been waiting to execute

for a long time [SPG92]. Another popular dynamic scheme that incorporates a measure of recent

processor usage is decay-usage scheduling. Decay-usage schedulers maintain exponentially-

decayed averages of recent processor usage for each process. These decayed averages are used

to periodically adjust process priorities; higher priority is given to processes that have consumed

little processor time in the recent past. Variants of decay-usage scheduling are employed by

numerous academic and commercial Unix systems [Bac86, LMKQ89].

Unfortunately, several significant problems are associated with priority scheduling. One of

the most severe problems is that dynamic priority schemes are typically ad-hoc and difficult to

understand. Even the popular decay-usage scheduling approach is poorly understood [Hel93],

133



despite its use in numerous operating systems. This is primarily due to the fact that resource

rights do not vary smoothly with priorities. Instead, resource rights are computed by highly

non-linear functions with parameters that even seasoned gurus find difficult to explain. As

a result, it has been observed that many of the priority assignments expressed by users and

programmers are not very meaningful [Dei90].

The ability to set priorities provides absolute control over scheduling. However, priorities

are an extremely crude, inflexible mechanism for specifying resource management policies. An

extensive case study that examined thread usage in large interactive systems found that priorities

were difficult to use and often interfered with other thread paradigms [HJT
�

93]. Moreover,

ad-hoc techniques that violated priority semantics were necessary to ensure that all threads

made reasonable progress. Another limitation of priorities is that they are not suitable for

specifying relative computation rates. Since the effects of differences or changes in priorities

are hard to predict, adjusting priorities and scheduler parameters to control service rates is at

best a black art.

Priority mechanisms also lack the encapsulation and modularity properties required for the

engineering of large software systems. For example, consider the problem of integrating several

independently-developed modules into a single concurrent system. In order to understand the

allocation of resources in the combined system, the internal priority levels used by each module

must be exposed. Such violations of modularity are necessary because inter-module priority

relationships are extremely difficult to compose or abstract.

In contrast to priority scheduling, proportional-share scheduling is easily understood in

terms of relative shares or percentages of a resource. Resource rights vary smoothly with ticket

assignments, making it simple to reason about differences or changes in allocations. Tickets are

also inherently modular, since each ticket guarantees its owner the right to a worst-case resource

consumption rate. The higher-level currency abstraction provides additional, powerful support

for specifying resource management policies. If desired, proportional-share mechanisms can

also be used to approximate static or dynamic priority schemes; an example emulation policy

is described in Section 2.5.1.

7.2 Real-Time Scheduling

In contrast to the ad-hoc treatment of priorities in operating systems, the use of priorities

has been rigorously analyzed in the domain of real-time systems [BW90]. Real-time systems

involve time-critical operations that impose absolute deadlines, such as those found in many

aerospace and military applications [Bur91]. In these systems, deadlines must be met to ensure

correctness and safety; a missed deadline may have dire consequences.
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One of the most widely used techniques in real-time systems is rate-monotonic scheduling,

in which priorities are statically assigned as a monotonic function of the rate of periodic

tasks [LL73, SKG91]. The importance of a task is not reflected in its priority; tasks with

shorter periods are simply assigned higher priorities. Bounds on total processor utilization

(ranging from 69% to nearly 100%, depending on various assumptions) ensure that rate-

monotonic scheduling will meet all task deadlines. Another popular technique is earliest

deadline scheduling [LL73], which always schedules the task with the closest deadline first.

The earliest deadline approach permits high processor utilization, but has increased overhead

due to the use of dynamic priorities; the task with the nearest deadline varies over time.

In general, real-time schedulers depend upon very restrictive assumptions, including precise

static knowledge of task execution times and prohibitions on task interactions. Extensions to the

basic real-time scheduling techniques have been developed to relax some of these assumptions

[BW90, SRL90], but many inflexible constraints still remain. For example, strict limits are

always imposed on processor utilization, and even transient overloads are disallowed.

Like other priority schedulers, real-time schedulers also lack desirable encapsulation and

modularity properties, requiring low-level information such as task execution times to be

globally exposed. However, it is possible to layer higher-level abstractions on top of a real-

time scheduling substrate. Mercer, Savage, and Tokuda have developed a processor capacity

reserve abstraction [MST93, MST94] for measuring and controlling processor usage in a

microkernel system with an underlying real-time scheduler. Reserves can be passed across

protection boundaries during interprocess communication, with an effect similar to the use of

ticket transfers. While this approach works well for many multimedia applications, its reliance

on resource reservations and admission control is still fairly restrictive.

Real-time scheduling techniques have been very successful for the limited set of applications

that can satisfy their onerous restrictions. In contrast, the proportional-share model used by

lottery scheduling and stride scheduling is designed for more general-purpose environments.

Task allocations degrade gracefully in overload situations, and active tasks proportionally

benefit from extra resources when some allocations are not fully utilized. These properties

facilitate adaptive applications that can respond to changes in resource availability.

7.3 Fair-Share Scheduling

Fair-share schedulers allocate resources so that users get fair machine shares over long periods

of time [Lar75, Hen84, KL88, Hel93]. Although the precise definition of fairness varies among

different fair-share schedulers, resources are generally allocated to groups or users in proportion

to the number of shares that they have been assigned. These schedulers typically assign shares
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directly to individual users or groups [Lar75, Hen84], although hierarchical share allocation

has also been implemented [KL88]. However, shares are not treated as first-class objects,

preventing the specification of more general resource management policies.

An important distinction between fair-share schedulers and proportional-share schedulers

is the time granularity at which they operate. As described in Chapter 2, proportional-share

schedulers attempt to provide an instantaneous form of sharing in which the resource consump-

tion rates of active clients are proportional to their ticket allocations. In contrast, fair-share

schedulers attempt to provide a time-averaged form of sharing based on actual usage, measured

over long time intervals. For example, consider a simple scenario consisting of two clients,�
and � , with identical share allocations. Suppose that

�
is actively computing for several

minutes, while � is temporarily inactive. When � becomes active, a fair-share scheduler will

grant it a larger share of resources to help it “catch up” to
�

. If � has been idle for a long period

of time, it may temporarily monopolize system resources; additional scheduling constraints are

sometimes imposed to reduce this effect. In contrast, a proportional-share scheduler will treat�
and � equally whenever they are both active, since it is “unfair” to penalize

�
for consuming

otherwise-idle resources.

Fair-share scheduler implementations are layered on top of conventional priority sched-

ulers, and dynamically adjust priority values to push actual usage closer to entitled shares. The

algorithms used by these systems are typically complex, requiring periodic usage monitoring,

complicated dynamic priority adjustments, and feedback loops to ensure fairness on a time scale

of minutes. For example, the sophisticated Share system [KL88] requires at least six adminis-

trative parameters to be specified, including priority update intervals and decay rates. Priority

updates are usually performed infrequently to amortize their ����� �	� cost over many scheduling

quanta, where �
� is the number of clients. An alternative fair-share implementation technique

also exists for systems that employ decay-usage scheduling, based on the manipulation of base

priorities [Hel93]. While this scheme avoids the addition of feedback loops introduced by other

fair-share schedulers, it assumes a fixed workload of long-running, compute-bound processes

to ensure steady-state fairness at a time scale of minutes.

Fair-share schedulers have been used in real systems to provide reasonable fairness and

predictable response times for large user communities on Unix timesharing systems [Hen84,

KL88]. However, their heavyweight algorithms are inappropriate for fine-grained thread

scheduling over short time intervals, and administrative tuning is required to achieve desired

fairness characteristics. It is interesting to note that a simple variant of stride scheduling could

also be used to implement various notions of time-averaged fairness. For example, clients

could be given credit for some or all of the passes that elapse while they are inactive, providing

a form of sharing that is averaged over longer time periods.

136



7.4 Proportional-Share Scheduling

A number of deterministic proportional-share scheduling mechanisms have recently been pro-

posed [BGP95, FS95, Mah95, SAW95]. Several of these techniques [FS95, Mah95, SAW95]

have been explicitly compared to lottery scheduling [WW94], although none of them have

demonstrated support for the flexible resource management abstractions introduced with lot-

tery scheduling.

Stoica and Abdel-Wahab have devised an interesting scheduler using a deterministic gen-

erator that employs a bit-reversed counter in place of the random number generator used by

lottery scheduling [SAW95]. Their algorithm results in an absolute error for throughput that is

��� � � � � � , where ��� is the number of allocations. Allocations can be performed efficiently in

��� � � � ��� time using a tree-based data structure, where � � is the number of clients. Dynamic

modifications to the set of active clients or their allocations require executing a relatively com-

plex “restart” operation with �����
��� time complexity, and no support is provided for nonuniform

quanta. However, Stoica recently stated that their algorithm has been improved to efficiently

support dynamic operations in ��� � � �
��� time, and that it has also been extended to handle

fractional quanta [Sto95].

Maheshwari has developed a deterministic charge-based proportional-share scheduler that

is loosely based on an analogy to digitized line drawing [Mah95]. This scheme has a maximum

relative throughput error of one quantum, but can exhibit ��� � � � absolute error, where �
� is

the number of clients. Although efficient in many cases, allocation has a worst-case ��� � �	�
time complexity. Fractional quanta are supported, but other dynamic modifications require

executing a “refund” operation with ��� ���	� time complexity.

Fong and Squillante have introduced a general scheduling approach called time-function

scheduling (TFS) [FS95]. TFS is intended to provide differential treatment of job classes,

where specific throughput ratios are specified across classes, while jobs within each class are

scheduled in a FCFS manner. Time functions are used to compute dynamic job priorities as a

function of the time each job has spent waiting since it was placed on the run queue. Linear

functions result in proportional sharing: a job’s value is equal to its waiting time multipled by

its job-class slope, plus a job-class constant. An allocation is performed by selecting the job

with the maximum time-function value. A naive implementation would be very expensive, but

since jobs are grouped into classes, an allocation can be performed in ����� � time, where � is the

number of distinct classes. If time-function values are updated infrequently compared to the

scheduling quantum, then a priority queue can be used to reduce the allocation cost to ������ � � ,
with an ��� � ��� � � cost to rebuild the queue after each update.
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When Fong and Squillante compared TFS to lottery scheduling, they found that although

throughput accuracy was comparable, the waiting time variance of low-throughput tasks was

often several orders of magnitude larger under lottery scheduling. This observation is consistent

with the simulation results presented in Section 4.2 involving response time. TFS also offers

the potential to specify performance goals that are more general than proportional sharing.

However, when proportional sharing is the goal, stride scheduling has advantages in terms of

efficiency and accuracy.

Baruah, Gehrke, and Plaxton recently introduced an algorithm for scheduling � � periodic

tasks on � resources [BGP95]. Their algorithm implements an extremely strong guaran-

tee – the absolute error for any client never exceeds one quantum, independent of � � . No

analysis was presented regarding response-time variability. Allocations are performed in

����� ����� � ��� ���  ����� � time, which reduces to ��� � � ����� time for a single resource. However,

a complex ��� ���	� pre-processing stage is required, and the algorithm does not support frac-

tional or nonuniform quanta. Since this algorithm is not designed to support dynamic client

participation or changes to allocations, each dynamic operation would require the expensive

pre-processing phase to be repeated. Thus, while this technique provides a tighter bound on

absolute error than stride-based scheduling for fixed workloads, it is not well-suited to processor

scheduling in more dynamic environments.

All of the deterministic mechanisms discussed in this section achieve better throughput

accuracy than lottery scheduling. However, only the algorithm by Baruah et al. [BGP95]

provides better bounds on throughput error than either stride scheduling or hierarchical stride

scheduling. In general, these scheduling techniques also require expensive operations to

transform client state in response to dynamic changes. Thus, they are less attractive than

stride-based scheduling for supporting dynamic or distributed environments. Since dynamic

operations are expensive, these techniques are incapable of providing efficient support for the

general resource management framework presented in Chapter 2.

7.5 Microeconomic Resource Management

Microeconomic schedulers are based on metaphors to resource allocation in real economic

systems [MD88, HH95a, Wel95]. Money encapsulates resource rights, and a price mechanism

is used to allocate resources. Most microeconomic schedulers [DM88, MD88, FYN88, Fer89,

Wal89, WHH
�

92, Wel93, Bog94] employ auctions to determine prices and allocate resources

among clients that bid monetary funds. Both the escalator algorithm proposed for uniprocessor

scheduling [DM88] and the distributed Spawn system [WHH
�

92] rely upon auctions in which

bidders increase their bids linearly over time. Since auction dynamics can be unexpectedly
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volatile, auction-based approaches sometimes fail to achieve resource allocations that are

proportional to client funding. The overhead of bidding also limits the applicability of auctions

to relatively coarse-grained tasks.

Other market-based approaches that do not rely upon auctions have also been applied to

managing processor and memory resources. Ellison modified the standard TENEX timesharing

scheduler to use a market-based model for allocating both processing time and core memory

[Ell75]. This scheduler is unique in its ability to manage multiple critical resources in a real

operating system. Users are allocated income streams that are spent to purchase CPU time and

memory occupancy. Instead of an auction mechanism, new prices are periodically computed

to be proportional to both current prices and resource utilization, and are smoothed using

an exponential-decay digital filter. It was reported that this system worked well in practice,

although several scheduling parameters were introduced and tuned by system programmers.

Harty and Cheriton have developed a market-based approach for memory allocation to

allow memory-intensive applications to optimize their memory consumption in a decentralized

manner [HC92]. This scheme charges applications for both memory leases and I/O capacity,

allowing application-specific tradeoffs to be made. However, unlike a true market, prices are

not permitted to vary with demand, and ancillary parameters are introduced to restrict resource

consumption [CH93].

Lottery scheduling and stride scheduling are compatible with a market-based resource

management philosophy. The mechanisms introduced for proportional sharing provide a

convenient substrate for pricing individual time-shared resources in a computational economy.

For example, tickets are analogous to monetary income streams, and the number of tickets

competing for a resource can be viewed as its price. The currency abstraction for flexible

resource management is also loosely borrowed from economics.

7.6 Rate-Based Network Flow Control

The core stride scheduling algorithm is very similar to Zhang’s virtual clock algorithm for

packet-switched networks [Zha91]. In this scheme, a network switch orders packets to be

forwarded through outgoing links. Every packet belongs to a client data stream, and each

stream has an associated bandwidth reservation. A virtual clock is assigned to each stream, and

each of its packets is stamped with its current virtual time upon arrival. With each arrival, the

virtual clock advances by a virtual tick that is inversely proportional to the stream’s reserved

data rate. In the stride-oriented terminology used in this thesis, a virtual tick is analogous to a

stride, and a virtual clock is analogous to a pass value.
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The virtual clock algorithm is closely related to the weighted fair queueing (WFQ) algorithm

developed by Demers, Keshav, and Shenker [DKS90], and Parekh and Gallager’s equivalent

packet-by-packet generalized processor sharing (PGPS) algorithm [PG93]. One difference that

distinguishes WFQ and PGPS from the virtual clock algorithm is that they effectively maintain

a global virtual clock. Arriving packets are stamped with their stream’s virtual tick plus the

maximum of their stream’s virtual clock and the global virtual clock. Without this modification,

an inactive stream can later monopolize a link as its virtual clock catches up to those of active

streams; such behavior is possible under the virtual clock algorithm [PG93].

The use of a global pass variable in the stride scheduling algorithm presented in Figure 3-13

is based on the global virtual clock employed by WFQ/PGPS, which follows an update rule that

produces a smoothly varying global virtual time. Before I became aware of the WFQ/PGPS

work, a simpler global pass update rule was used: global pass was set to the pass value of

the client that currently owns the resource. To see the difference between these approaches,

consider the set of minimum pass values over time in Figure 3-12. Although the average pass

value increase per quantum is 1, the actual increases occur in non-uniform steps. The smoother

WFQ/PGPS virtual time rule was adopted to improve the accuracy of pass updates associated

with dynamic modifications.

To the best of my knowledge, stride scheduling is the first cross-application of rate-based

network flow control algorithms to scheduling other resources such as processor time. New

techniques were required to support dynamic changes and higher-level abstractions such as

ticket transfers and currencies. Hierarchical stride scheduling is a novel recursive application

of the basic technique. Compared to prior schemes, hierarchical stride scheduling can improve

throughput accuracy and reduce response time variability.

A completely different technique from the domain of high-speed network traffic manage-

ment is similar to randomized lottery scheduling. In order to allocate bandwidth fairly among

datagram traffic flows, a statistical matching technique has been proposed for switch schedul-

ing in the AN2 network [AOST93]. In this ATM-like network, bandwidth guarantees are

normally achieved using a deterministic parallel iterative matching technique that consults a

fixed schedule for forwarding packets. However, dynamic changes to bandwidth allocations

require an expensive recomputation of this schedule. Statistical matching is a generalization

of parallel iterative matching that systematically exploits randomness to efficiently support

frequent changes in bandwidth allocations.
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Chapter 8

Conclusions

This chapter summarizes key results for the resource management techniques presented in this

thesis. A comparison of the core proportional-share mechanisms is included, along with rec-

ommendations for the appropriate use of each algorithm. In closing, future research directions

are discussed, and specific opportunities for future exploration are highlighted.

8.1 Summary

This thesis explores resource management abstractions and mechanisms for general-purpose

computer systems. A flexible framework is proposed to decentralize resource management

decisions by allowing users and applications to specify their own policies. Dynamic control

over resource consumption rates is achieved by introducing a pair of simple abstractions –

tickets and currencies. Tickets encapsulate resource rights, and currencies support the modular

composition and insulation of concurrent resource management policies.

Several proportional-share scheduling mechanisms capable of implementing this framework

are also introduced, including both randomized and deterministic algorithms. All of the

proposed mechanisms require only ������ �
��� time to allocate a resource, where ��� is the number

of clients competing for the resource. Each algorithm can also efficiently perform a dynamic

operation in ��� � � ����� time. Dynamic operations include changes to the set of actively competing

clients and modifications to relative allocations. Aside from implementation complexity, these

mechanisms primarily differ in the throughput accuracy and response-time variability that they

achieve for clients. Throughput accuracy is quantified by absolute error, measured as the

difference between the specified and actual number of resource quanta that a client receives

during a series of allocations.
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Lottery scheduling is a simple randomized scheduling algorithm. Lottery scheduling triv-

ially supports complex, dynamic environments since it is effectively stateless. The use of

randomness also prevents malicious clients from “gaming” the system to obtain an unfair share

of resources. However, the inherent use of randomness results in poor throughput accuracy over

short allocation intervals, producing an expected ��� � ����� absolute error after ��� allocations.

Lottery scheduling also exhibits high response-time variability for low-throughput clients. An

extension of lottery scheduling that selects multiple winners per lottery substantially improves

accuracy and lowers response-time variability for many workloads. Nevertheless, multi-winner

lotteries offer little improvement over ordinary lottery scheduling for low-throughput clients.

Stride scheduling is a deterministic scheduling algorithm that cross-applies and extends

elements of rate-based flow-control mechanisms designed for networks. Compared to lottery

scheduling, this approach requires more complicated support for dynamic environments. How-

ever, stride scheduling achieves significantly improved accuracy over relative throughput rates,

with significantly lower response-time variability. The absolute error for stride scheduling is

��� ���	� , which is independent of the number of allocations.

Hierarchical stride scheduling is a novel recursive application of the basic stride scheduling

technique, and provides a tighter ��� � � ����� bound on absolute error. Compared to ordinary stride

scheduling, this hierarchical approach significantly reduces response-time variability for heavily

skewed ticket distributions, but can actually increase variability for other distributions. In

practice, hierarchical stride scheduling is typically better in terms of absolute error, but is usually

worse in terms of response-time variability. In general, the goals of minimizing throughput

error and minimizing response-time variability ultimately conflict for most allocation ratios.

Overall, stride scheduling is the best proportional-share mechanism for most systems.

Empirical results demonstrate that typical absolute error levels are much smaller than the worst-

case ��� ����� bound, and that response-time variability is usually very low. Stride scheduling

exhibits its worst-case behavior in systems with skewed ticket allocations, such as a geometric

distribution of tickets to clients. Hierarchical stride scheduling is a more appropriate choice for

such systems, since it reduces both throughput error and response-time variance. Hierarchical

stride scheduling is also preferred over ordinary stride scheduling when throughput error is the

primary concern, and response-time variability is a less important consideration.

The randomized lottery-based scheduling algorithms also have an important niche. First,

lottery scheduling is extremely simple and easily understood, requiring no special operations

to support dynamic environments. Every client is given a fair chance of winning each resource

allocation based on its ticket assignment, yet allocations are granted in an unpredictable order.

This randomization actively thwarts attacks by malicious clients attempting to “game” the

system and unfairly exploit resources. Dynamic operations for stride scheduling are also
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designed to avoid exploitation by malicious clients. However, it is nearly impossible to

guarantee that no loopholes exist. Randomized scheduling may therefore be the best choice if

abuse by malicious clients is a real concern, as might be the case for some commercial services.

Lottery scheduling also has advantages for proportional-share scheduling in large-scale

parallel or distributed systems. A tree-based distributed lottery scheduler makes local decisions

based on compact, aggregate ticket values that can be communicated efficiently. In contrast,

stride scheduling cannot rely upon aggregate metrics, and distributed priority queue updates

are needed for each allocation. Moreover, randomized techniques may exhibit better dynamic

stability than deterministic alternatives in systems that concurrently manage multiple resources.

Prototype process schedulers were implemented for the Mach and Linux operating system

kernels, in addition to extensive simulation studies. These prototypes provide a testbed for

gaining practical experience with the proposed framework and mechanisms in real systems.

Experiments using a wide range of applications demonstrate flexible, responsive control over

synthetic benchmarks, scientific computations, client-server interactions, and multimedia appli-

cations. Both lottery scheduling and stride scheduling successfully achieve proportional-share

control over computation rates. As expected, the deterministic stride scheduler prototype is

significantly more accurate than the randomized lottery scheduler prototype.

This thesis also proposes and analyzes several new resource-specific techniques for pro-

portional sharing. Ticket inheritance extends the basic lottery and stride algorithms to ensure

proportional-share control over computation rates despite contention for synchronization re-

sources. Randomized inverse lottery scheduling and deterministic minimum-funding revoca-

tion techniques implement dynamic, revocation-based proportional sharing for space-shared

resources such as memory. A funded delay cost disk scheduling algorithm is also proposed

for managing disk I/O bandwidth. These resource-specific algorithms provide the fundamental

building blocks for integrated proportional-share management of multiple resources.

8.2 Future Directions

This thesis opens up several opportunities for future work. As computers become increasingly

ubiquitous, new demands are being placed upon software to flexibly and efficiently manage

resources in diverse environments. One useful research direction is the application and ex-

tension of the proposed proportional-share mechanisms to manage resources not considered

in this thesis. For example, lottery scheduling has recently been used to guarantee minimum

service rates for scarce network bandwidth in mobile environments [HH95b]. Power is another

critical resource that can be affected by scheduling in mobile systems [WWDS94]. It would be

interesting to examine proportional-share techniques for managing energy consumption.
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Another promising research area is the integrated use of proportional-share scheduling tech-

niques to simultaneously manage all critical system resources. Although the general framework

introduced in this thesis provides a solid foundation for integrated resource management, there

are still several unresolved issues. Ideally, applications could independently optimize their

own performance by making dynamic tradeoffs between the consumption of processor time,

memory, and other resources. Uniform use of tickets provides a consistent way to quantitatively

evaluate such tradeoffs, but programmers need additional tools to facilitate the construction of

more adaptive software. An integrated system is likely to resemble a computational economy,

and may exhibit a broad spectrum of diverse behaviors. In some respects, this is at odds with

the simple, easily-understood model offered by proportional-share scheduling.

A final area that deserves considerable attention is the intersection of computational resource

management and human-computer interaction. Many multithreaded, interactive applications

can significantly benefit from the research presented in this thesis. Flexible control over resource

management allows interactive applications to improve responsiveness and user productivity

by focusing resources on tasks that are currently important [DJ90, TL93]. In addition, the

framework proposed in this thesis supports adaptive applications that can dynamically respond

to changes in resource availability. Appropriate graphical interface elements are also needed

to facilitate interactive, user-level resource management. Direct manipulation of visual repre-

sentations for tickets and currencies could enhance the usability of the proposed framework.

Automated techniques to track user attention would also be desirable.
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