Introduction

he mainstream use of

computers has increased in

sophistication to a point where
single processor systems are unable
to cope with performance demands.
Multiprocessor systems, in which
several processing elements execute
in parallel, are now the most feasible
means of achieving the required
performance improvements.
Multiprocessors are already in use in
scientific applications, including
aerodynamics, astrophysics, biology,
computer science, chemistry,
engineering, geophysics, material
science, nuclear physics and plasma
physics. They also have a range of
industrial applications such as in the
oil industry, automobile
manufacturing and pharmaceuticals.

The enabling technology for
multiprocessor systems arises from
the remarkable progress made in
microelectronics. The increasing
density and corresponding
functionality of chips has allowed the
cost-effective construction of printed
circuit computers incorporating
several megabytes of memory and
the ability to execute millions of
instructions per second.

The advances in microelectronics
have given rise to a number of
commercial and research-based
multiprocessor systems. Existing
multiprocessor systems can be
classified into two broad
architectural areas: single instruction
stream multiple data (SIMD) and
multiple instruction stream multiple
data (MIMD). In SIMD architectures
the same program instructions are
executed simultaneously by every
processor on different data. In
MIMD architectures, each node
executes a separate instruction
stream.

Given the variety of architectures
and the high cost of developing large
programs for these architectures,
there is a clear need for support for
writing high-performance programs
that are portable and scalable across
a broad range of multiprocessor
architectures. Even on a single
multiprocessor machine, better
support is needed for writing parallel
programs that are both correct and
efficient.

In this article we describe Prelude,
a programming language and
accompanying system support for
writing portable programs for MIMD
multiprocessor systems. Prelude
supports a methodology for
designing and organising parallel
programs that makes them easier to
tune for a particular architecture or
to port to a new architecture. We
present a high-level description of
some of the novel mechanisms

Portable software
for multiprocessor

systems

In this article we describe Prelude, a programming language and
accompanying system support for writing portable parallel
programs for multiprocessor architectures. Prelude allows the
programmer to separate the description of the computation to
be performed by a program from the description of how that
computation is to be mapped onto a machine. This makes it
easier to tune the performance of a program on a particular
machine and also simplifies porting a program to new

architectures.

by Adrian Colbrook, William E. Weihl,
Eric A. Brewer, Chrysanthos N.
Dellarocas, Wilson C. Hsieh, Anthony D.
Joseph, Carl A. Waldspurger and Paul

Wang

Large-Scale Parallel Software Research Group,
MIT Laboratory for Computer Science

provided by Prelude rather than
giving a detailed description of the
language syntax and semantics.
Ultimately, we expect to integrate
the mechanisms we are developing
into parallel versions of existing
languages such as C and Fortran.
MIMD multiprocessors can be
divided into two broad categories;
shared-memory multiprocessors and
distributed-memory multiprocessors.
In shared-memory multiprocessors,
the processors share the primary
memory via a connection network
(which is often a common bus}.
Interprocessor communication and
synchronisation in these
architectures are usually via shared-
memory operations. In distributed-
memory architectures, each
processor has its own local memory
that is not shared. Interprocessor
communication and synchronisation

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

in these architectures is achieved via
explicit message passing between
the processors. However, the
distinctions between these two
categories are becoming increasingly
vague, with shared-memory
architectures supporting message
passing and distributed-memory
architectures supporting virtual
shared memory.

In this article we are particularly
concerned with the implementation
of Prelude on distributed memory
MIMD architectures. Prelude
programs are usually implemented in
a shared memory style (with no
explicit message passing). It is the
concern of the language compiler
and runtime system to map these
programs efficiently onto distributed-
memory architectures.

Multiprocessors differ in a number
of characteristics that affect the

275

performance of parallel programs,
including: the relative costs of
communication, computation and
synchronisation; the number of
processors; the network topology;
and the support provided for shared
memory. The problem in achieving
reasonable portability is to allow a
single program to be mapped onto
many different machines without
requiring the programmer to make
significant changes to the program
for each machine.

Portability is related to the
problem of performance tuning. The
performance of a program on a
particular machine can depend on
many details of the machine, and
can be difficult to predict. Thus,
significant tuning may be required to
achieve good performance. The
mechanisms we propose allow the
programmer to separate the
description of the computation of a
program from the description of how
that computation is to be mapped
onto a machine, thus making it
easier to tune the performance of a
program on a particular machine.
This also simplifies porting a program
to new architectures. As described in
more detail below, our mechanisms
integrate and extend the mapping
mechanisms proposed in previous
systems. Qur goal is to provide a
comprehensive suite of mapping
mechanisms that together give the
programmer the flexibility and
control needed to map programs
efficiently onto a variety of
machines.

Efficiently mapping a program
onto a multiprocessor involves:
choosing an appropriate size for the
concurrent tasks; determining where
to place tasks and data; determining
when and where to migrate tasks
and data; scheduling the execution
of tasks; managing communication
among tasks; and determining how
to cache, replicate and partition
data structures. For example, in a
distributed-memory message~
passing multiprocessor, decisions
about the placement of data and
tasks have a strong impact on the
amount of communication required
to run a program. Since the cost of
sending a message in such machines
is typically significantly greater than
the cost of accessing local memory,
placement decisions can make a
large difference in the performance
of a program. This is also true in a
shared-memory system; a poor job
of placement for tasks can result in a
large number of cache misses, which
also reduces performance.

Existing approaches to managing
these issues fall into three classes:
those that provide direct, low-level
control; those that completely

276

relegate decisions to the compiler
and runtime system; and those that
allow the programmer to provide
directives to the compiler and
runtime system, but leave the details
of decomposing data structures and
tasks to the compiler and runtime
system. The first approach is
extremely difficult to use, and leads
to programs that are difficult to port,
precisely because so many
architecture-specific decisions are

The performance of
a program on a
particular machine
can depend on
many details of the
machine, and can
be difficult to
predict

encoded in the program. The second
approach is easy to use, but its
application to date has been limited
to relatively small programs with
regular communication patterns,
task sizes and data structures. For
numerical programs with irregular
data sets and for symbolic programs,
purely automatic approaches have
not worked well. As a result, we
believe that the third approach is the
most promising.

Prelude provides high-level
annotations that allow the
programmer to control the mapping
of a program onto a particular
machine. The annotations attached
to the program are used to describe
and control the performance of the
program, not its functionality. For
example, annotations can be used to
control the migration of objects and
computation between processors in
distributed memory architectures;
such migration can yield a significant
reduction in message traffic, with a
resulting improvement in program
performance. Since annotations
affect performance but not
functionality, the annotations
attached to a program can be freely
changed without introducing errors
into the program; this makes it easy
to experiment with different
mappings to determine which
provides the best performance. This
separation of architecture-specific
performance-related concerns from
the rest of a Prelude program makes

it relatively easy to port a program,
or to tune its performance.

The Prelude runtime system
incorporates novel mechanisms for
migrating data and computation in a
distributed-memory multiprocessor.
We also incorporate flexible
mappings of the logical program
threads onto the actual physical
threads in the multiprocessor to
produce efficient message passing.
Existing systems have provided
reasonable flexibility in mapping
data onto parallel machines (via
partitioning, replication, and
migration), but have provided only
simple mechanisms such as remote
procedure calls for mapping logical
threads. Prelude is designed to
provide flexible control over the
migration of computation, which
allows a logical thread to be mapped
onto a number of different physical
threads as the computation
represented by the logical thread
migrates around the processors in
the machine.

Parallel programs are difficult to
test, debug and tune. To accompany
Prelude, we have built a retargetable
simulator, Proteus,' that provides
extremely efficient instruction-level
simulation for a wide range of
multiprocessors. Because of its
efficiency, accuracy and flexibility,
Proteus has shown itself to be a
useful tool for prototyping, testing,
and tuning parallel programs. We
have built prototypes of the Prelude
compiler and runtime system using
Proteus to evaluate the efficiency of
our mechanisms for a variety of
multiprocessor configurations.

In the next section of this article
we describe the Prelude language.
The following section describes how
the annotations supported by
Prelude provide flexible control over
the mapping of a program onto a
particular machine.

The Prelude language

relude is an object-oriented
P language with linguistic

support for parallel computing.
Prelude provides the programmer
with a computational model based
on objects and threads that
abstracts away from the underlying
architecture. An object is a self-
contained entity that encapsulates
state. For example, in a banking
system the objects might be the
different customer accounts in the
system and the ‘state’ of each
account would be the current
balance and a record of recent
transactions.

A thread is simply a sequence of
statements that are executed
sequentially. Concurrent programs
contain some number of threads that

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

execute in parallel. Threads can
invoke methods on objects, create
new objects and fork new threads.
For example, account objects in the
banking system may provide
‘deposit’ and ‘withdraw’ methods
that can be invoked on an account
object by a thread. Prelude also
provides mechanisms that allow
threads to communicate and
synchronise.

A Prelude object can be single-
threaded or multi-threaded. A multi-
threaded object can have multiple
active threads performing method
invocations on it; a single-threaded
object can support only one such
thread at a time. Some systems,
particularly those based on Actors?
support only single-threaded objects.
We believe that multi-threaded
objects are natural and efficient to
use in many programs, and that to
provide adequate generality and
expressive power the system should
not restrict the programmer to using
single-threaded objects, which forces
him to use complex and awkward
program structures to achieve the
benefits of multi-threaded objects.
At the same time, when the
programmer intends an object to be
single-threaded, the source program
is simpler if he does not have to
code the required synchronisation
explicitly using locks; in addition, the
required synchronisation and
scheduling can be implemented more
efficiently if the compiler and
runtime system know that the object
is single-threaded. Thus, we allow
the programmer to indicate explicitly
whether an object is single-threaded;
the compiler then automatically
generates the necessary
synchronisation code.

Prelude supports the following
constructs for thread creation
(variants of the parfor, parbegin and
fork constructs have been introduced
by other languages including PCF
Fortran,®> BLAZE,* occam® and
SISALS):

® the parallel parfor construct is
syntactically similar to a
sequential for loop. However, each
iteration specified by the parfor
loop is executed by a newly
created thread in parallel with the
other iterations.

The parbegin construct specifies a
set of sequential code blocks;
newly created threads execute
these blocks in parallel with each
other.

The fork construct is used to
specify asynchronous invocations
of methods and procedures.

The pipe construct’ is used for
ordered asynchronous invocations,
which run in parallel with the

x: account
balance: int
success: bool

balance := x. deposit(50)

success := x.withdraw(30)

% declares x to be an account object

% an arbitrary code segment represented simply as K

Fig. 1 Prelude code that synchronously invokes methods on an account object

calling thread but are run in the
order in which the invocations
were made by the caller.

Mapping annotations

he Prelude language allows

I concurrency to be expressed

independent of architecture-
specific constraints. Annotations
specify the architecture-specific
implementation details that are
usually necessary to achieve efficient
execution. Previous projects have
proposed particular mechanisms for
mapping programs onto
multiprocessors,'S each of which is
appropriate for particular kinds of
applications and particular kinds of
machines. For a system to be
effective, we believe that it must
support a variety of mapping
mechanisms efficiently, and must
provide flexible support for choosing
among the different mechanisms.

Emerald® and Amber® provide
mechanisms for specifying object
location (locate object X at node Y),
object migration (move object X to
node Y) and object-object co-
location (attach object X to object
Z}. An invocation on an object in
Emerald or Amber is always
executed at the location of the
object, using remote procedure call if
the object is remote. The argument
objects of a remote invocation can
also be moved to the site of the
invocation by specifying call-by-
move parameter passing. Distributed
Smalltalk,'© Sloop,'" lvy,'2
DEMOS/MP,'3 Par,'* and
Comandos's have migration
mechanisms similar to those in
Emerald and Amber.

In certain situations neither
remote procedure call (commonly
referred to as function-shipping) nor
object migration (commonly referred
to as data-shipping) is sufficient. For
some applications, migrating a
computation is more effective than
moving or replicating the data or
accessing it via a series of remote
procedure calls. We provide
additional annotations for

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

computation migration. These
annotations allow us to move the
execution of code from one
processor to another. In this section
we illustrate the different invocation
techniques for remote data
supported by Prelude for
distributed-memory muitiprocessor
systems. We also describe the other
annotations that Prelude provides.
We begin by considering a simple
piece of Prelude code, shown in
Fig. 1, that performs synchronous
invocations on an account object.
The code first deposits $50 into the
account x by invoking the method
x.deposit. This method returns the
current balance of the account after
the deposit has been made. We then
execute some code segment
containing only invocations on local
objects (represented by K) and then
perform a second invocation, this
time x.withdraw. This invocation
attempts to withdraw $30 from the
account. If there are sufficient funds
in the account then the withdrawal is
made and the invocation returns
True. Otherwise, no changes are
made to the account balance and
the invocation returns False.
Assume that a thread on
processor Py executes the code
segment in Fig. 1 and that the object
x is located on processor P, in a
distributed memory MIMD
architecture. A processor gains
access to remote objects through
explicit message passing. Prelude
invocations are location
independent, it is the responsibility
of the Prelude compiler to generate
the code that determines the relative
location of threads and objects and
performs the appropriate local or
remote invocations. In this case, the
compiler and runtime system can
choose to perform the remote
invocations using remote procedure
calls, data migration or computation
migration. We now consider each of
these alternatives in turn.

Invocations using remote procedure
calls
Fig. 2 represents the execution of

277

Po

time ¢ |

|

Py

=

| x.deposit (50)

Ay
&‘ |

I x.withdraw (30)

‘y

Fig. 2 Execution of the code segment using remote procedure calls (RPCs)

the code segment in Fig. 1 using
remote procedure calls. Processor Py
sends an invocation message to
processor P,. The code for
x.deposit(50) is executed on P, and
the reply message containing the
new account balance is sent back to
Po. The code segment K on Py is
executed and then a remote
invocation is performed for
x.withdraw(30).

In this example, there are two
remote procedure calls each of which
requires two messages. Each
invocation message contains
references to the object (x in this
case) and the method to be invoked,
the arguments for the invocation and
an address for the reply value.

Invocations using data migration

Fig. 3 represents the execution of
the code segment in Fig. 1 using
data migration. In this case the
object x moves (or migrates) from
P, to Po. Processor Py first sends a
migration request message to
processor P,. P, then migrates x to
Po, and then x.deposit, the code
segment K and x.withdraw are
executed locally by Po.

In this example, object migration
requires two messages, the first to
request migration and the second to
migrate the object itself. The size of
the message containing the
migrating object is proportional to
the amount of state that must be
migrated in order to reconstruct the
object at the destination. Object
migration also involves address
translation on architectures without
a global address space. A description

278

of the implementation of this
translation process is beyond the
scope of this article; the interested
reader is referred to Reference 16.

Invocations using computation
migration

When a thread attempts to
invoke a method on a remote object,
the execution of the thread could be
moved to the object’s location (so
that subsequent invocations on the
same object become local). We term
this computation migration and this
corresponds in the implementation
to moving the top frame on the

calling thread’s stack to the location
of the called object.

Fig. 4 represents the execution of
the code segment in Fig. 1 using
computation migration. Processor Po
executes migration code that moves
the executing thread from P, to
processor P;; x.deposit, the code
segment K and x.withdraw are then
executed by P;.

The size of the migration message
depends on the amount of state
required by the thread. Note that
only the top stack frame is migrated
in this case so that control eventually
returns to the thread on P, once the
invocation associated with the top
frame has completed. We have
assumed that the application code is
replicated on every processor in the
system. If this is not the case then
the code associated with top stack
frame must also be migrated.

We now consider an extended
example to highlight the differences
between these implementations for
remote invocations.

Extended example: a concurrent
B-tree

We illustrate our mechanisms with
a program to implement a
concurrent B-tree, an important data
structure in high-throughput
database systems. The goal of our
mechanisms is to allow programmers
to write programs in a ‘shared-
memory’ programming style (or
whatever style makes it easiest to
understand the programs) regardless
of the physical machine’s actual
memory model. The resulting
programs can then be mapped onto
machines so that the performance of
the program is comparable to

Po

time ¢ I

x. deposit (50) |
]
x. withdraw (30) |

migration request

Py

|migrution code

Fig. 3 Execution of the code segment using data migration

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

Po
time“

migration code I

Py

Mt«m

| x.deposit (50)
| K
| x. withdraw (30)

control returns _ - —=""

Fig. 4 Execution of the code segment using computation migration

programs with explicit message-
passing constructs.

Search trees are data structures
that support many dynamic-set
operations, including search, insert
and delete. A B-tree is a balanced
search tree in which every branch
node of the tree has many children.
The interested reader is referred to
References 17 and 18 for a complete
description of the B-tree algorithm
used in this example.

Operations on the B-tree can be
divided into three phases: the locate
phase, which finds the appropriate
leaf on which to execute the
operation; the decisive phase, which
performs the actual operation on the
leaf found in the locate phase; and
the update phase, which propagates
any updates to the structure up the
tree as needed. The algorithm uses
read-write locks on individual nodes
to synchronise concurrent
operations. Independent operations
may concurrently acquire the same
lock-in read mode. However, a
thread can acquire a lock-in write
mode only if no other thread has
acquired the lock in either read or
write mode.

Prelude code to implement the
locate phase for an insert operation
on a B-tree is given in Fig. 5. The
code traverses the tree from the root
using read-locks, until a leaf node is
reached.

One way of achieving high
throughput for a concurrent B-tree is
to store different nodes of the B-tree
on different processors. Mapping the
data structure in this way allows
operations on nodes to run

concurrently.

Given this mapping of the tree’s
data structure onto a machine, how
should a thread executing a B-tree
operation be mapped onto
processors? We could choose to run
the operation on a single processor,
and execute each synchronous
invocation of a method as a remote
procedure call to the processor that
stores the appropriate node. For
example, the invocations of the
is_leaf, read_lock, successor and
read_unlock methods on a remote
node could be remote procedure
calls (commonly referred to as
function-shipping). Alternatively, we
could choose to use data migration
and move each B-tree node object
accessed to the processor executing
the B-tree operation (commonly

referred to as data-shipping).

Neither function-shipping nor
data-shipping, however, leads to
very good performance in this case.
Using function-shipping, the number
of messages is very high. For
example, the fragment of the insert
method shown in Fig. 5 makes four
invocations to access an interior
node of the tree. Each invocation
requires two messages, giving a total
of eight messages per node
accessed. Using data-shipping, the
number of messages could be as few
as two per node accessed; however,
the amount of data sent in the
messages will usually be high, since
the entire contents of each node
must be transferred between
processors.

Alternatively, we could choose to
use computation migration. Fig. 6
shows an example execution of the
code given in Fig. 5 using
computation migration. In this
example, the thread executing the
code begins on processor P, and the
root node is stored on processor P;.
When an invocation is made on a
node object that is not local the
computation moves to the location
of the node object and continues
execution. In this example, the
computation moves from P, through
to Ps as the tree is traversed. One
message is required for each node
accessed and it contains the key and
data values together with the
reference for the node to be
accessed. This leads to an
implementation with fewer messages
than one using function-shipping and
shorter messages than one using
data-shipping.

Programs written explicitly to use
this kind of ‘computation migration’
style (often referred to as
continuation passing) can be very
efficient on distributed-memory
machines. Indeed, many proponents

insert (k: key, d: data)

node := root

node := next
end

end insert

while ~node.is_leaf() do.
node.read_lock()
next := node.successor(k)
node.read_unlock()

% decisive and update phases follow

Fig. 5 The locate phase for the insert method for the B-tree

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

279

Fig. 6 Execution of the
insert method using
computation migration

insert (k: key, d: data)
node := root Po

while ~node.isleaf()Jdo
node.read_lock() Py
next := node.successor(k)
node.read_unlock()

root

node := next
end .

@

root.successor(k) = X

while ~node.isleaf()do
node.read_lock() P2
next := node.successor(k)
node.read_unlock(}

node = X

node := next
end

X.successor(k) = Y

while ~node.isleaf(Jdo

Ps

node =Y

of Actor-based languages advocate
programming in this style, in part to
reduce the amount of
communication required.? However,
such programs are usually complex
and hard to understand. In addition,
they are less efficient on shared-
memory machines than programs
that use ordinary procedure calls.

Prelude allows a programmer to
write a single program that naturally
expresses an algorithm and then to
choose how to map it onto a
machine by writing annotations that
indicate how data and threads
should be located and moved. Thus,
the programmer can easily change
the mapping simply by changing the
annotations, and can easily
experiment with different mappings
to determine which gives the best
performance. For example, to map
the concurrent B-tree program
described above onto a distributed~
memory machine using computation
migration messages, a move
annotation can added to the code of
Fig. 5 as follows:

insert (k: key, d: data) move

The move annotation instructs the
Prelude system that each call in the
body of the insert method should be
implemented by computation
migration. A call within the method
is compiled so that the call is
executed using ordinary stack-based
mechanisms when it is on the same
processor as the caller. When it is on

280

another processor, however, the
system constructs a message
containing the top frame of the local
stack and sends it to the processor
to run the call. When the called
method completes, the insert
method continues running on that
processor.

Thus Prelude allows programs to
be coded using computation
migration while still preserving the
clarity of code that uses remote
procedure calls. Furthermore, the
move annotation has no effect on
the correctness of the program. If
the program is moved to an
architecture on which remote
procedure calls are more efficient
than computation migration, the
annotation is simply removed and
invocations are then performed by
remote procedure calls.

Annotations in Prelude

The ability to express
computation migration in Prelude
through simple annotations
promotes portable programming
styles. In other object-oriented
languages the movement of
computation would have to be
encoded explicitly in the methods. In
addition to the move annotation,
Prelude provides annotations for
controlling parameter passing,
resource management and the
movement and placement of objects.

We provide several kinds of
annotations to control the location
and movement of objects. First, the

migration of arguments to
invocations can be controlled via
annotations. In an object-oriented
system the natural parameter-
passing method is call-by-object-
reference.'®2?° In a message-passing
architecture such semantics may
cause additional remote invocations
for parameter access. However,
Prelude objects are mobile.
Therefore, additional remote
references can be avoided by moving
argument objects to the site of the
remote invocation. Whether this is
worthwhile depends on the argument
object size, the number of
invocations of the arguments
required, and the costs of mobility
and local invocation. Annotations
similar to those in Emerald may be
used to specify call-by-move
parameter passing. In this case the
parameter object is migrated to the
site of the remote invocation.

In addition to call-by-move
parameter passing we also provide
annotations to describe the
movement and placement of objects.
Objects can be initially /ocated at a
given processor and later moved to
other processors. We can also
specify object-object co-location
using the an annotation.

We are currently exploring
additional annotations, based on
ideas in the Munin system?' and on
directives for data placement in
Fortran D,22 to provide control over
replication and partitioning of data.
We plan to experiment with these

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

kinds of annotations to understand
how they interact with annotations
for controlling the migration of
objects and computations, and then
to build a prototype to explore the
problems involved in constructing an
integrated system that supports all
these mechanisms efficiently.

In order to develop high-
performance concurrent
applications, programmers must be
able to exert control over resource
management at the application level.
We are developing new dynamic
resource management mechanisms
for a variety of parallel-program
structures on both shared-memory
and distributed-memory
multiprocessors.

Conclusions

n this article we have described
l Prelude, a programming language

and accompanying system
support for writing portable
programs for MIMD multiprocessor
systems. Prelude allows the
programmer to write programs using
an abstract model of computation
that is independent of any particular
underlying architecture. A program
can then be mapped onto a
particular machine by attaching
annotations to it that describe the
mapping. Since annotations affect
performance, but not functionality,
the annotations attached to a
program can be freely changed
without introducing errors into the
program. This separation of
architecture-specific performance-
related concerns from the rest of a
Prelude program makes it relatively
easy to port a program, or to tune
its performance.

Our goal in Prelude is to provide
a comprehensive suite of mapping
mechanisms that give the
programmer sufficient power to
implement a wide range of parallel
programs efficiently on a wide
variety of MIMD architectures. To
this end, we have included many
mapping mechanisms that have
appeared in other systems, including
remote procedure call, object
migration, and data replication and
partitioning. In addition, Prelude
includes novel migration mechanisms
for computations. Programs can be
coded using computation migration
while still preserving the clarity of
code that uses remote procedure
calls.

We are experimenting with our
current implementation to evaluate
the effectiveness of our suite of
mapping mechanisms and to
understand what other mechanisms
or changes to our current
mechanisms are needed. Ultimately,

we expect to integrate many of these
mechanisms into versions of existing
languages such as C and Fortran.

Acknowledgments

his work was supported by the

National Science Foundation

under grant CCR-8716884, by
the Defense Advanced Research
Projects Agency (DARPA) under
Contract N0OO014-89-J-1988 and by
an equipment grant from Digital
Equipment Corporation. Individual
authors were supported by a Science
and Engineering Research Council
Postdoctoral Fellowship, an Office of
Naval Research Graduate Fellowship,
National Science Foundation
Graduate Fellowships, an IBM
Graduate Fellowship and an AT&T
Graduate Fellowship.

References
1 BREWER, E. A., DELLAROCAS, C. N,
COLBROOK, A., and WEIHL, W. E.:
‘Proteus: a high-performance parallel-
architecture simulator’, Technical
Report MIT/LCS/TR-516, MIT
Laboratory for Computer Science,

2 AGHA, G.: ‘Actors: a model of
concurrent computation in distributed
systems’ (MIT Press, Cambridge, MA,
1986)

3 Parallel Computing Forum: PCF
Fortran Proposed Standard, 1990.
Version 3

4 MEHROTRA, P., and VAN ROSEDALE,
J.: ‘The BLAZE language: a parallel
language for scientific programming’,
Parallel Computing, November 1987,
5, pp.339-361

5 INMOS Ltd.: ‘Occam programming
manual (Prentice Hall, Englewood
Cliffs, New Jersey, 1984)

6 McGRAW, J., SKEDZIELEWSK], S.,
ALLAN, S., OLDEHOEFT, R.,
GLAUERT, J., KIRKHAM, C., NOYCE,
W., and THOMAS, R.: ‘SISAL
language reference manual’, Technical
report, Lawrence Livermore National
Laboratory, March 1985.

7 COLBROOK, A, BREWER, E. A,
HSIEH, W. C., WANG, P, and WEIHL,
W. E.: ‘Pipes: linguistic support for
ordered asynchronous invocations’,
Technical Report MIT/LCS/TR-539,
MIT Laboratory for Computer
Science, 1992

8 JUL, E., HUTCHINSON, N. and
BLACK, A.: ‘Fine-grained mobility in
the Emerald system’, ACM
Transactions on Computer Systems,
1988, 6, (1), pp.109-133

9 CHASE, J. S., AMADOR, F. G.,
LAZOWSKA, E. D., LEVY, H. M., and
LITTLEFIELD, R. J.: ‘The Amber
system: Parallel programming on a
network of multiprocessors’, Technical
Report 88-04-01, Department of
Computer Science, University of
Washington, April 1989

10 BENNETT, J. K.: ‘The design and
implementation of distributed
smalltalk’, in Proceedings of the
Object-Oriented Programming

COMPUTING & CONTROL ENGINEERING JOURNAL NOVEMBER 1992

Systems Languages and Applications
Conference, 1987, pp.318-330

11 LUCCO, S. E.: ‘Parallel programming
in a virtual object space’, in
proceedings of the Object-Oriented
Programming Systems Languages and
Applications Conference, 1987,
pp.26-33

1211, K.: “Ivy: A shared virtual memory
system for parallel computing’, in
Proceedings of the International
Conference on Parallel Processing,
1988, pp.1178-86

13 POWELL, M. L., and MILLER, B. P:
‘Process migration in DEMOS/MP’, in
Proceedings of the Ninth ACM
Symposium on Operating System
Principles, 1983, pp.110-119

14 COFFIN, M. D., and ANDREWS,
G. R.: ‘“Towards architecture-
independent parallel programming’,
Technical Report 89-21a, Department
of Computer Science, University of
Arizona, December 1989

15 MARQUES, J. A., and GUEDES, P
‘Extending the operating system to
support an object-oriented
environment’, in Proceedings of the
Object-Oriented Programming
Systems Languages and Applications
Conference, 1989, pp.113-122

16 WEIHL, W., BREWER, E.,
COLBROOK, A., DELLAROCAS, C.,
HSIEH, W., JOSEPH, A.,
WALDSPURGER, C., and WANG, P.:
‘Prelude: a system for portable
parallel softare’, Technical Report
MIT/LCS/TR-519, MIT Laboratory for
Computer Science, 1991

17 WANG, P.: ‘An in-depth analysis of
concurrent B-tree algorithms’,
Technical Report MIT/LCS/TR-496,
MIT Laboratory for Computer
Science, January 1991

18 WEIHL, W. E., and WANG, P.: ‘Multi-
version memory: software cache
management for concurrent B-trees’,
in Proceedings of the 2nd IEEE
Symposium on Parallel and
distributed Processing, 1990,
pp.650-655

19 LISKOV, B., and GUTTAG, J.:
’Abstraction and specification in
program development’ (MIT Press,
1986)

20 GOLDBERG, A., and ROBSON, D.:

‘Smalltalk80: the language and its

implementation’ (Addison-Wesley,

Reading, MA, 1983)

BENNETT, J., CARTER, J., and

ZWAENEPOQEL, W.: ‘Munin:

distributed shared memory based on

type-specific memory coherence’, in

Proceedings of the ACM Symposium

on Principles and Practice of Parallel

Programming, March 1990

22 FOX, G. et al.: 'Fortran D language
specification’, Technical Report COMP
TR90-141, Rice University,
Department of Computer Science,
December 1990

2

© IEE: 1992

At the time this article was written, all
the authors were with the Large Scale
Parallel Research Group, Laboratory for
Computer Science, Massachusetts
Institute of Technology, 545 Technology
Square, Cambridge, MA 02139, USA.

281

