
PRELUDE: A System for Portable ParallelSoftwarebyWilliam Weihl Eric Brewer Adrian ColbrookChrysanthos Dellarocas Wilson Hsieh Anthony JosephCarl Waldspurger Paul WangOctober 1991AbstractIn this paper we describe Prelude, a programming language and accompanying system support forwriting portable MIMD parallel programs. Prelude supports a methodology for designing and orga-nizing parallel programs that makes them easier to tune for particular architectures and to port to newarchitectures. It builds on earlier work on Emerald, Amber, and various Fortran extensions to allowthe programmer to divide programs into architecture-dependent and architecture-independent parts,and then to change the architecture-dependent parts to port the program to a new machine or to tuneits performance on a single machine. The architecture-dependent parts of a program are speci�ed byannotations that describe the mapping of a program onto a machine. Prelude provides a variety ofmapping mechanisms similar to those in other systems, including remote procedure call, object migra-tion, and data replication and partitioning. In addition, Prelude includes novel migration mechanismsfor computations based on a form of continuation passing. The implementation of object migration inPrelude uses a novel approach based on �xup blocks that is more e�cient than previous approaches,and amortizes the cost of each migration so that the cost per migration drops as the frequency of mi-grations increases.The current implementation of Prelude is built on top of Proteus, a con�gurable simulator thatprovides both fast and accurate simulations of a wide range of MIMD architectures. Proteus itself isa useful tool for developing parallel applications, since it provides powerful non-intrusive debugging andperformance monitoring capabilities that are di�cult or impossible to obtain on a real machine. Muchof the testing, debugging, and initial testing of an application can be accomplished using Proteus,typically with less e�ort than would be required on a real machine. In addition, Proteus allows theprogrammer to test the scalability and portability of a program, including on a range of machine sizesand architectures not supported by available machines. We are using Proteus to develop our initialprototype of Prelude, and plan to port the implementation of Prelude to commercial and researchmultiprocessors in the near future.Keywords: Portability, Performance tuning, Annotations, Computation migration, Data migration.c
 Massachusetts Institute of Technology 1991This work was supported by the National Science Foundation under grant CCR-8716884, by the DefenseAdvanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988 and by an equipmentgrant from Digital Equipment Corporation. Individual authors were supported by an O�ce of NavalResearch Graduate Fellowship, a Science and Engineering Research Council Postdoctoral Fellowship, Na-tional Science Foundation Graduate Fellowships, an IBM Graduate Fellowship and an AT&T GraduateFellowship. Massachusetts Institute of TechnologyLaboratory for Computer ScienceCambridge, Massachusetts 02139

2 1 INTRODUCTION1 IntroductionA number of MIMD multiprocessors are now commercially available, and new large-scale machines arebeing developed. Given the variety of architectures and the cost of developing large programs, there isa clear need for support for writing high-performance programs that are portable and scalable across abroad range of MIMD architectures. Even on a single multiprocessor machine, better support is neededfor writing parallel programs that are both correct and e�cient.In this paper we describe Prelude, a programming language and accompanying system supportfor writing portable MIMD programs. Prelude supports a methodology for designing and organizingparallel programs that makes them easier to tune for a particular architecture or to port to a newarchitecture. Ultimately, we expect to integrate the mechanisms we are developing into parallel versionsof existing languages such as C and Fortran. As part of this project, we are also developing debuggingand performance monitoring tools to help the programmer debug and tune programs; these are alsodescribed brie
y in this paper.Multiprocessors di�er in a number of characteristics that a�ect the performance of parallel programs,including the relative costs of communication, computation, and synchronization; the number of pro-cessors; the network topology; and the support provided for shared memory. The problem in achievingreasonable portability is to allow a single program to be mapped onto many di�erent machines withoutrequiring the programmer to make signi�cant changes to the program for each machine.Portability is related to the problem of performance tuning. The performance of a program on aparticular machine can depend on many details of the machine, and can be di�cult to predict. Thus,signi�cant tuning may be required to achieve good performance. The mechanisms we propose allow theprogrammer to separate the description of the computation to be performed by a program from thedescription of how that computation is to be mapped onto a machine, thus making it easier to tunethe performance of a program on a particular machine. This also simpli�es porting a program to newarchitectures. As described in more detail below, our mechanisms integrate and extend the mappingmechanisms proposed in previous systems. Our goal is to provide a comprehensive suite of mappingmechanisms that together give the programmer the
exibility and control needed to map programse�ciently onto particular machines.E�ciently mapping a program onto a machine involves choosing an appropriate grain size for tasks;determining where to place tasks and data; determining when and where to migrate tasks and data;scheduling tasks; managing communication among tasks; and determining how to cache, replicate andpartition data structures. In a distributed-memory message-passing machine, decisions about the place-ment of data and tasks have a strong impact on the amount of communication required to run a program.Since the cost of sending a message in such machines is typically signi�cantly greater than the cost of

3accessing local memory, placement decisions can make a large di�erence in the performance of a program.This is also true in a shared-memory system; a poor job of placement for tasks can result in a largenumber of cache misses, which also reduces performance.Existing approaches to managing these issues fall into three classes: those that provide direct, low-level control; those that completely relegate decisions to the compiler and runtime system; and those thatallow the programmer to provide directives to the compiler and runtime system, but leave the detailsof decomposing data structures and tasks to the compiler and runtime system. The �rst approach isextremely di�cult to use, and leads to programs that are di�cult to port, precisely because so manyarchitecture-speci�c decisions are encoded in the program. The second approach is easy to use, but itsapplication to date has been limited to relatively small programs with regular communication patterns,task sizes, and data structures. For numerical programs with irregular data sets and for symbolicprograms, purely automatic approaches have not worked well. As a result, we believe that the thirdapproach is the most promising.Prelude provides the programmer with a computational model based on objects and threads thatabstracts away from the underlying architecture, together with high-level annotations that allow theprogrammer to control the mapping of a program onto a particular machine. Concurrency is expressedexplicitly inPrelude, and the programmer is encouraged to write programs with as much concurrency aspossible. The Prelude compiler and runtime system then generate an appropriate number of physicalthreads for the program to run e�ciently on a particular machine. The annotations attached to theprogram are used to describe and control the performance of the program, not its functionality. Forexample, annotations can be used to control the migration of objects and computation between processorsin distributed memory architectures; such migration can yield a signi�cant reduction in message tra�c,with a resulting improvement in program performance. Since annotations a�ect performance but notfunctionality, the annotations attached to a program can be freely changed without introducing errorsinto the program; this makes it easy to experiment with di�erent mappings to determine which providesthe best performance. This separation of architecture-speci�c performance-related concerns from therest of a Prelude program makes it relatively easy to port a program, or to tune its performance.The Prelude runtime system incorporates novel mechanisms for migrating data and computationin a distributed-memory multiprocessor. We also incorporate
exible mappings of the logical programthreads onto the actual physical threads to produce e�cient message passing. Existing systems haveprovided reasonable
exibility in mapping data onto parallel machines (via partitioning, replication, andmigration), but have provided only simple mechanisms such as remote procedure calls for mapping logicalthreads. As described in more detail in Section 4, Prelude is designed to provide
exible control overthe migration of computation, which allows a logical thread to be mapped onto a number of di�erent

4 2 THE PRELUDE LANGUAGEphysical threads as the computation represented by the logical thread migrates around the machine.In addition, the runtime system supports domain-speci�c scheduling and load balancing mechanismsthat allow the granularity and distribution of tasks to be chosen adaptively at run time based on thecharacteristics of the architecture and the application load.Parallel programs are di�cult to test, debug, and tune. To accompany Prelude, we have builta retargetable simulator, Proteus, that provides extremely e�cient instruction-level simulation for awide range of MIMD multiprocessors. Because of its e�ciency, accuracy and
exibility, Proteus hasshown itself to be a useful tool for prototyping, testing, and tuning parallel programs. We have builtprototypes of the Prelude compiler and runtime system using Proteus to evaluate the e�ciency ofour mechanisms for a variety of MIMD con�gurations.In Section 2 of this paper we describe the Prelude language. In Section 3 we describe how theannotations supported by Prelude provide
exible control over the mapping of a program onto aparticular machine, and in Section 4 we discuss the techniques we have developed for implementing themappings described by the annotations. In Section 5 we describe Proteus and its support for languagedevelopment and prototyping. Finally, in Section 6 we conclude with a discussion of the current statusof the project and our plans for future work.2 The Prelude LanguagePrelude is a statically typed, class-based, object-oriented language with linguistic support for parallelcomputing. It is lexically scoped and statement based. Prelude's computational model is based ontwo concepts: objects and threads. Objects contain state and reside in the heap. Each thread maintainsa stack and performs sequential computation. Threads can access and modify existing objects, createnew objects, and fork new threads. Mechanisms are provided to allow threads to communicate andsynchronize.A Prelude object can be single-threaded or multi-threaded. A multi-threaded object can havemultiple active threads performing method invocations on it; a single-threaded object can support onlyone such thread at a time. Some systems, particularly those based on Actors [Agh86], support onlysingle-threaded objects. We believe that multi-threaded objects are natural and e�cient to use inmany programs, and that to provide adequate generality and expressive power the system should notrestrict the programmer to using single-threaded objects, which forces him to use complex and awkwardprogram structures to achieve the bene�ts of multi-threaded objects. At the same time, when theprogrammer intends an object to be single-threaded, the source program is simpler if he does not haveto code the required synchronization explicitly using locks; in addition, the required synchronization and

2.1 Asynchronous Invocations 5scheduling can be implemented more e�ciently if the compiler and runtime system know that the objectis single-threaded. Thus, we allow the programmer to indicate explicitly as part of a class de�nitionthat the class's objects are single-threaded; the compiler then automatically generates the necessarysynchronization code.Prelude supports the following constructs for thread creation (variants of the parfor, parbe-gin and fork constructs have been introduced by other languages including PCF Fortran [For90],BLAZE [MvR87], Occam [Lim84] and SISAL [MSA+85]):� The parallel parfor construct is syntactically similar to a sequential for loop. However, eachiteration speci�ed by the parfor loop is executed by a newly created thread in parallel with theother iterations.� The parbegin construct speci�es a set of sequential code blocks; newly created threads executethese blocks in parallel with each other.� The fork construct is used to specify asynchronous invocations of methods and procedures. Asyn-chronous invocation is described in Section 2.1.� The pipe construct, described in detail in Section 2.1, is used for ordered asynchronous invocations,which run in parallel with the calling thread but are run in the order in which the invocations weremade by the caller.For the parfor, parbegin and fork constructs, Prelude supports two types of thread creation: mustand maybe. In must creation, the new thread (or threads) is necessary to ensure correctness; an exampleof must creation is an asynchronous call that may deadlock if a separate thread is not forked to performthe invocation. In maybe creation, the new thread may improve performance, but does not a�ectcorrectness. In Prelude, the default is maybe creation. The keyword must is used if creation isrequired.2.1 Asynchronous InvocationsPrelude provides three types of invocations: synchronous, unordered asynchronous, and ordered asyn-chronous. In a synchronous invocation, the calling thread performs the invocation. Unlike synchronousinvocations, an asynchronous invocation conceptually forks a new thread to perform the invocation. Thecalling thread does not necessarily wait for the invocation to �nish. There are two kinds of asynchronouscalls: unordered and ordered.Unordered asynchronous invocations avoid the software overhead required to maintain order and aretherefore simpler and faster than ordered invocations. However, unordered invocations often result in

6 2 THE PRELUDE LANGUAGEprograms that are di�cult to understand and contain subtle race conditions. In many situations a threadcan run concurrently with a sequence of calls it makes but these calls must be executed sequentially.Synchronization to achieve this e�ect can be coded explicitly in the application program, but this leadsto complex and less e�cient programs. A mechanism for ordered asynchronous calls leads to programsthat are both simpler to understand and more e�cient than ones in which the ordering is enforced byapplication-level synchronization. We introduce a new mechanism, pipe objects, to support orderedasynchronous calls.2.1.1 Unordered Asynchronous CallsIn an unordered asynchronous call, a new thread is forked without any extra synchronization with otherthreads. Therefore, a thread making a sequence of unordered asynchronous calls to the same receiverobject cannot make any assumptions about the order in which the calls are processed. Prelude denotesunordered asynchronous calls by preceding the invocations with the fork keyword. The invocationreturns a promise.The parameterized class promise[T] refers to a promise for an object of type T. Promises [LS88] aresimilar to futures in MultiLisp [Hal85], except that the value of a promise must be explicitly extracted.(Promises were designed as part of extensions to Argus [LDH+87] for incorporating asynchronous re-mote procedure calls, as implemented in the Mercury project [LBG+88].) A promise is created by anasynchronous call. For example, an asynchronous call to a procedure that normally returns a type Treturns the type promise[T].A promise, unlike a future, must be claimed explicitly. For a promise[T], the method claim()returns(T) returns the value of the promise, an object of type T. Promises also provide a methodready() returns(bool) that indicates whether or not the promise has been �lled (and is thereforeready to be claimed).For example, the following Prelude code represents asynchronous calls of method foo of object xwith arguments corresponding to the values of arg1, arg2,. . . , argN.y: promise[T1] := fork x.foo(arg1, arg2,. . ., argN)fork x.foo(arg1, arg2,. . ., argN)z: T1 := y.claim()The two calls to foo can be run concurrently, and the result of the �rst call is obtained by the callingthread via the call to claim in the third line, which blocks until the result is available.

2.1 Asynchronous Invocations 72.1.2 Ordered Asynchronous CallsIn some circumstances, for example in a pipeline, a sequence of invocations must be performed in order,but can be run in parallel with the calling thread. Previous work by Gi�ord and Glasser [GG88] and inthe Mercury system [LBG+88] has resulted in the design of remote invocation mechanisms for distributedsystems in which a sequence of calls between a single sender and a single receiver are run in order, butasynchronously with respect to the caller. We have adapted these ideas for use in Prelude; our designprovides integrated language support for such ordered asynchronous invocations, and also generalizesthe previous work by allowing calls from multiple sending threads to be ordered.Pipes are special objects used to implement ordered asynchronous calls. The parameterized classpipe[T] denotes a pipe to an object of type T. A pipe is created by the class method pipe[T].new.If x is an object of type T, then invoking pipe[T].new(x) creates and returns a pipe object of typepipe[T] that provides a mechanism for ordering asynchronous method invocations to object x. Objectsof type pipe[T] provide all methods provided by type T. However, the return types for these methodsare promises: if T provides a method foo(T1) returns(T2), then pipe[T] provides a method foo(T1)returns(promise[T2]).To perform a sequence of ordered asynchronous calls to an object, we merely perform the samesequence of calls in a synchronous manner to one of its pipes; we refer to such calls as \pipe calls". Thepipe ensures that pipe calls are processed by the target object in the same order that they are sent.Abstractly, we can view a pipe to object x as a forwarder that queues up all calls sent to it and returnspromises of the appropriate types. Semantically, it sends the queued calls sequentially to x; a call issent to x only after x has �nished processing the previous queued call. The implementation, describedin more detail in Section 4, uses queues at both the sending and the receiving ends (if the caller andthe target object are on di�erent processors) so that the delay in the interconnection network a�ects thecomputation as little as possible.A pipe, like any other object, can be passed on to other objects as an argument in a procedure ormethod invocation; multiple objects and threads can send ordered asynchronous calls through the samepipe object. Also, there can be multiple pipe objects associated with the same target object.If a calling thread is to perform a sequence of ordered asynchronous calls to a receiving object, itmust �rst obtain a pipe assigned to the receiving object. This can be accomplished either by accessing anexisting pipe object assigned to the receiving object, or by creating a new pipe. To perform the sequenceof ordered asynchronous calls, the calling thread invokes the same sequence of calls synchronously on thepipe object. For example, suppose two asynchronous method invocations with method names foo andbar are to be sent to object x:T, and the invocation for foo must occur before the invocation for bar.(foo and bar return values of types T1 and T2, respectively.) The followingPrelude code accomplishes

8 3 MAPPING ANNOTATIONSthis behavior:p: pipe[T] := pipe[T].new(x)y: promise[T1] := p.foo(arg1, arg2,. . ., argN)z: promise[T2] := p.bar(arg1, arg2,. . ., argM)The pipe ensures that the call to bar does not start running on x until the call to foo has completed.The results of the calls can be obtained by the calling thread (or some other thread that obtains thepromises) by claiming the promises returned by the pipe calls.3 Mapping AnnotationsThe Prelude language allows concurrency to be expressed independent of architecture-speci�c con-straints. Annotations specify the architecture-speci�c implementation details that are usually necessaryto achieve e�cient execution. Previous projects have proposed particular mechanisms for mapping pro-grams onto multiprocessors (e.g., [JHB88, CAL+89, Ben87, Luc87, Li88, PM83, CA89, MG89]), each ofwhich is appropriate for particular kinds of applications and particular kinds of machines. For a system tobe e�ective, we believe that it must support a wide variety of mapping mechanisms e�ciently, and mustprovide
exible support for the user to choose among the di�erent mechanisms. Thus, Prelude sup-ports a wide range of mapping techniques that have appeared individually in other systems. In addition,looking at example applications has made it clear that the mapping techniques that have been proposedso far are inadequate. In particular, existing systems support data mapping via migration, partitioning,and replication (including caching), and support thread mapping via remote procedure call. For someapplications, migrating a computation is more e�ective than moving or replicating the data or accessingit via a series of remote procedure calls. Thus, the design of Prelude includes
exible mechanisms formigrating computations. We also include annotations for specifying scheduling constraints.Emerald [JHB88] and Amber [CAL+89] provide mechanisms for specifying object location (locateobject X at node Y), object migration (move object X to node Y) and object-object co-location (attachobject X to object Z). An invocation on an object in Emerald or Amber is always executed at thelocation of the object, using remote procedure call if the object is remote. The argument objects of aremote invocation can also be moved to the site of the invocation by specifying call-by-move parameterpassing. Distributed Smalltalk [Ben87], Sloop [Luc87], Ivy [Li88], DEMOS/MP [PM83], Par [CA89] andComandos [MG89] have migration mechanisms similar to those in Emerald and Amber.In certain situations neither remote procedure call (commonly referred to as function-shipping) norobject migration (commonly referred to as data-shipping) is su�cient. We provide additional annotationsfor computation migration, which can be viewed as a form of continuation-passing. These annotations

3.1 An Example: Continuation Passing 9allow us to move the execution of code from one processor to another. For example, the programmermight indicate that when a procedure attempts to invoke a method on a remote object, the executionof the procedure should be moved to the object's location (so that subsequent invocations on the sameobject become local); this corresponds in the implementation to moving the top frame on the callingthread's stack to the location of the called object. In general, the programmer might indicate thatany portion of the top of the thread's stack should be moved, ranging from a part of the top frame(representing part but not all of the remaining computation in the currently active procedure at the topof the stack) to the entire stack (representing the entire remaining computation of the entire thread).In the rest of this section, we motivate the need for computation migration via an extended example,and then describe the annotations that appear in Prelude. The example also illustrates the bene�tsgained by allowing the mapping of a program onto a machine to be changed easily without a�ectingthe functionality of the program. In the next section, we describe the implementation of the mappingmechanisms.3.1 An Example: Continuation PassingWe illustrate our mechanisms with a program to implement a concurrent B-tree, an important datastructure in high-throughput database systems. The goal of our mechanisms is to allow programmersto write programs in a \shared-memory" programming style (or whatever style makes it easiest tounderstand the programs) regardless of the physical machine's actual memory model. The resultingprograms can then be mapped onto machines so that the performance of the program is comparable toprograms with explicit message-passing constructs.The most e�cient concurrent B-tree algorithms known are based on the \link technique," which wasintroduced by Lehman and Yao [LY81]. The underlying data structure in the link technique is similarto a B+-tree (in which the actual data is stored only in the leaves of the tree), with the modi�cationthat each B-tree node contains a pointer to its right neighbor in the tree. In other words, all the nodesat a given level of the tree are linked together from left to right. The links act as \forwarding pointers,"and allow processes traversing down the tree from root to leaf to lock only one node at a time.The Prelude code in Figure 1 shows the outline of an implementation of a B-tree class. Therepresentation of a BTree is speci�ed by the anchor; it contains a reference to the root node. The classmethod new creates a new BTree instance. Four instance methods are provided for each class instance.The instance method locate is private (and thus is hidden within the scope of the class de�nition),while the three instance methods insert, delete and lookup are exported.Wang has extended the Lehman-Yao algorithm so that a process propagating a merge (as well as asplit) up the tree locks only one or two nodes at a time [Wan91, WW90]. Operations in Wang's algorithm

10 3 MAPPING ANNOTATIONSBTree = class % link method B-treeslots anchor: Anchor end % a reference to the root of the treeclass exports newnew() returns (BTree)% class method to create BTree instances......end newendinstance exports insert, delete, lookupinsert(k: Key, d: Data)% adds new (Key,Data) pair to the trees: Stack[Node] := locate(k)% update leaf and propagate split if necessary......end insertdelete(k: Key)% remove entry for Key k and propagate merge if necessary......end deletelookup(k: Key) returns (Data)% returns the Data associated with k......end lookup% private instance methodlocate(k: Key) returns (Stack[Node])% implemented in Figure 2......end locateendend BTree Figure 1: The BTree class.can be divided into three phases: the locate phase, which �nds the appropriate leaf on which to executethe operation; the decisive phase, which performs the actual operation on the leaf found in the locatephase; and the update phase, which propagates any updates to the structure up the tree as needed. Thealgorithm uses read-write locks on individual nodes to synchronize concurrent operations. The locate

3.1 An Example: Continuation Passing 11phase (implemented by the private instance method locate) for an insert or delete method �nds,write-locks, and returns the appropriate leaf as the top element on a stack of the nodes visited at eachlevel; it is described by the Prelude code in Figure 2. In this code the child method of the class Nodereturns the appropriate child of the Node instance, while the right neighbor method returns the rightneighbor. The covers method returns true if and only if the range of keys stored in the subtree rootedat the Node instance includes its argument.locate(k: Key) returns (Stack[Node])n, next : Nodes : Stack[Node] := Stack[Node].empty()% access root nodeanchor.read_lock()n := anchor.root()anchor.read_unlock()% descend to leaf leveln.read_lock()while ~n.is_leaf() doif n.covers(k)then next := n.child(k)s.push(n)else next := n.right_neighbor()endn.read_unlock()n := nextn.read_lock()end% find and write-lock appropriate leafn.read_unlock()n.write_lock()while ~n.covers(k) donext := n.right_neighbor()n.write_unlock()n := nextn.write_lock()ends.push(n)return(s)end locate Figure 2: locate method.The locate method traverses the tree using read-locks, following links to children and to rightneighbors until it reaches a leaf; it then uses write-locks and follows right-links until it �nds the leaf

12 3 MAPPING ANNOTATIONSresponsible for storing the desired key. The stack of nodes constructed in locate is used to propagateupdates back up the tree during the update phase. The locate phase for the lookup operation is similar,except that it read-locks the leaf, and does not keep track of the nodes visited at each level.One way of achieving high throughput for a concurrent B-tree is to store di�erent nodes of the B-treeon di�erent processors. To avoid a bottleneck at the root of the tree, it may be necessary to replicatethe root node on several processors (a replicated object). Mapping the data structure in this way allowsoperations on di�erent nodes to run concurrently, and also allows operations on the same node to runconcurrently if the node is replicated and the operations only use read-locks. (Algorithms using the linktechnique are designed to use write-locks infrequently, so replication is likely to be e�ective, particularlyfor nodes near the root of the tree.)Given this mapping of the tree's data structure onto a machine, how should a process executing anoperation be mapped onto processors? For the code shown above for the locate phase of an insertoperation, we could choose to run the operation on a single processor, and execute each synchronousinvocation of a method as a remote procedure call (RPC) to the processor that stores the appropri-ate node (commonly referred to as function-shipping). For example, the invocations of the read lock,read unlock, and child methods could be RPCs. Systems such as Emerald [JHB88] allow the pro-grammer to choose between this alternative and fetching the data, i.e., moving the B-tree node objecttemporarily to the processor executing the B-tree operation (commonly referred to as data-shipping).Neither function-shipping nor data-shipping, however, leads to very good performance. Using function-shipping, the number of messages is very high. For example, the locate method shown above makes atleast �ve invocations to access an interior node of the tree. Each invocation will require two messages,giving a total of at least ten messages per node accessed. Using data-shipping, the number of messagescould be as few as three per node accessed: two to fetch the node on the �rst access, and one to send thenode back to the processor that stores it after the last access. However, the amount of data sent in themessages will be high, since the entire contents of each node must be transferred between processors.We could rewrite the program above to reduce the number of messages using function-shipping totwo per node accessed. For example, we could rewrite locate to invoke a new method find successor,shown in Figure 3, that returns the appropriate successor. If find successor is invoked using RPC, weneed only two messages for each interior node accessed. Similar restructuring can reduce the number ofmessages required to access the anchor and each leaf node to two.Introducing additional methods and procedures that are called using RPC can improve performance,but has several problems: the resulting program will often be less clear than the original; the trans-formations appropriate for one machine may be inappropriate for another; and RPC may require morecommunication than necessary.

3.1 An Example: Continuation Passing 13find_successor(k: Key) returns (Node) signals (leaf)next : Nodeself.read_lock()if self.is leaf() then signal leaf endif self.covers(k)then next := self.child(k)else next := self.right_neighbor()endself.read_unlock()return(next)end find_successor Figure 3: find successor method.The code for the B-tree operations could be rewritten to use a \continuation-passing" style of com-munication so that only one message is required for each node accessed, half as many messages as arerequired by the program in Figure 3. The idea is to send a message to the processor that stores a nodewhen the node is �rst accessed; that message is processed by calling find successor, and then sendinga message to the processor that stores the node returned by find successor. The messages containthe node to be accessed, the key involved, and the node just accessed. The relationship between thismessage-passing program and the relatively simple program in Figure 2 can be understood by viewingeach message as a \continuation" for the locate procedure. After a processor has executed the part ofthe locate procedure involved in accessing a B-tree node stored on that processor, it sends a messageasking the processor that stores the next node to execute the \rest" of the procedure. The job of exe-cuting the procedure is handed from one processor to another until the appropriate leaf node is found,at which point the operation is executed and a message containing the result is sent back to the originalcaller.Programs written in this kind of \continuation-passing" style can be very e�cient on distributed-memory machines. Indeed, many proponents of Actor-based languages advocate programming in thisstyle, in part to reduce the amount of communication required [Agh86]. However, such programs areusually complex and hard to understand. In addition, they are less e�cient on shared-memory machinesthan programs that use ordinary procedure calls.Prelude allows a programmer to write a single program that naturally expresses an algorithm andthen to choose how to map it onto a machine by writing annotations that indicate how data and threadsshould be located and moved. Thus, the programmer can easily change the mapping simply by changingthe annotations, and can easily experiment with di�erent mappings to determine which gives the bestperformance. For example, to map the concurrent B-tree program described above onto a distributed-

14 3 MAPPING ANNOTATIONSmemory using machine using continuation-passing style messages, a move annotation can added to thecode of Figure 2 as follows:locate(k: Key) returns (Stack[Node]) moveThe move annotation instructs the Prelude system that each call in the body of the locate methodshould be called by passing a continuation. A call within the method is compiled so that the call isexecuted using ordinary stack-based mechanisms when it is on the same processor as the caller. Whenit is on another processor, however, the system constructs a message containing the top frame of thelocal stack and sends it to the processor to run the call. When the called method completes, the locatemethod continues running on that processor.3.2 Annotations in PreludeThe ability to express continuation-passing in Prelude through simple annotations promotes portableprogramming styles. In other object-oriented languages the movement of computation would have to beexplicitly encoded in the methods; at every point where a continuation should be passed, a new methodmust be written to represent the continuation. In addition to the move annotation, Prelude providesannotations for controlling parameter passing, resource management and the movement and placementof objects. In this section, we describe other Prelude annotations.3.2.1 Computation MigrationOur current prototype supports migration of single stack frames, representing the remaining computationof the currently active routine in a thread. Single-frame migration is accomplished by attaching amoveannotation to the header of a routine or to individual calls in the body of the routine. Attaching theannotation to a particular call indicates that if the call involves a remote object at runtime, the framefor the routine should be moved to the location of the remote object. Attaching the annotation to theheader of a routine, as in the B-tree example above, is equivalent to attaching it to every invocation inthe body of the routine; it indicates that any call in the body of the routine to a method on a remoteobject should move the routine's stack frame to the location of the remote object.In addition to single-frame migration, we are also designing mechanisms and annotations to supportmigration of partial and multiple frames. This will give the programmer signi�cantly more
exiblecontrol over the mapping of the computation represented by logical threads in a program onto physicalthreads and messages in a machine.

3.2 Annotations in Prelude 153.2.2 Object MigrationWe provide several kinds of annotations to control the location and movement of objects. First, themigration of arguments to invocations can be controlled via annotations. In an object-oriented systemthe natural parameter-passing method is call-by-object-reference [LG86, GR83]. In a message-passingarchitecture such semantics can potentially cause additional remote invocations for parameter access.However, Prelude objects are mobile. Therefore, additional remote references can be avoided by movingargument objects to the site of the remote invocation. Whether this is worthwhile depends upon theargument object size, the number of invocations of the arguments required, and the costs of mobility andlocal invocation. Annotations similar to those in Emerald may be used to specify call-by-move parameterpassing. In this case the parameter object is migrated to the site of the remote invocation.In addition to call-by-move parameter passing we also provide annotations to describe the movementand placement of objects. Objects can be initially located at a given processor and later moved to otherprocessors. We can also specify object-object co-location using the move to annotation. If X and Y areobjects then move X to Y results in object X being moved to the same processor as object Y.We are currently exploring additional annotations, based on ideas in the Munin system [BCZ90] andon directives for data placement in Fortran D [F+90], to provide control over replication and partitioningof data. We plan to experiment with these kinds of annotations to understand how they interact withannotations for controlling the migration of objects and computations, and then to build a prototype toexplore the problems involved in constructing an integrated system that supports all of these mechanismse�ciently.3.2.3 Resource ManagementIn order to develop high-performance concurrent applications, programmersmust be able to exert controlover resource-management at the application level. We are developing new dynamic resource manage-ment mechanisms for a variety of parallel program structures on both shared-memory and distributed-memory multiprocessors.Our resource management framework is based on a new abstract priority mechanism that encapsu-lates resource rights. This is related to earlier work with allocation mechanisms that was motivated bymicroeconomics [WHH+92]. It is coupled with a stable, scalable, hierarchical propagation mechanismthat e�ciently disseminates information about resource usage and availability. Together, these mech-anisms provide an e�cient substrate that supports both load balancing and programs that adaptivelyvary their granularity based on application loads and machine con�gurations. For example, a task'spriority, together with information about loads on various processing resources, can be used by a taskmanagement package to make dynamic cost-bene�t decisions about whether to fork a subtask or run

16 4 IMPLEMENTATIONit inline. The same information can also be used to decide where tasks should be created and exe-cuted. Annotations are used to express the priority of tasks to enable the runtime system to make thecost-bene�t decisions.3.3 SummaryA useful system for mapping parallel programs onto parallel machines should provide the program-mer with a comprehensive suite of mapping mechanisms. Prelude has been designed to integratemechanisms provided individually in previous systems. In addition, we have designed new mechanismsfor controlling the migration of computations. As illustrated by the B-tree example above, these newmechanisms give the programmer important additional expressive power. We are experimenting withour prototype implementation to evaluate the e�ectiveness of this suite of mapping mechanisms and tounderstand what additional mechanisms or changes to these mechanisms are needed.4 ImplementationIn this section we discuss the implementation of the annotations and mapping mechanisms describedabove. We begin by outlining our current implementation of single-frame migration for computations.Then we discuss our implementation of object migration, which uses a novel approach based on �xupblocks to achieve better performance than previous approaches. Finally, we discuss the implementationof pipes, and in particular how it interacts with object migration.4.1 Computation MigrationOur current implementation of the Prelude compiler, which is targeted to the Proteus simulator,generates C code. As a result, we do not have control over the generated assembly code. Therefore, wetreat continuation-passing as an intermediate-language transformation, where we simply create a newmethod that encapsulates the continuation. Although this is not as e�cient (particularly in terms of thesize of the generated code) as implementing continuation-passing at a lower level, it allows us to explorethe bene�ts of di�erent continuation-passing annotations.For a given continuation-passing invocation, we compute the live variables at the invocation; wegenerate a new method that takes these variables as arguments and represents the execution of therest of the stack frame. At the point of call, the new method is called if the called object is non-local;otherwise, execution continues locally. Later versions of the Prelude compiler will generate assemblylanguage directly. We will then implement continuation-passing by sending the relevant portions of the

4.2 Object Migration 17stack frame and the program counter, which should lead to improved performance and smaller objectcode.To date we have implemented migration of single stack frames. However, the programmer may wishto migrate multiple or partial stack frames. For example, in the B-tree implementation the leaf nodereturned by the locate method will have an update method applied to it (either insert or delete).It may be bene�cial to migrate the top two frames on the stack; that for the locate method and thatfor the update method. We are currently designing annotations and the compiler mechanisms needed toimplement migration of partial and multiple frames.4.2 Object MigrationObject migration provides a mechanism to improve performance by improving load balance and re-ducing communication costs. Migration mechanisms are traditionally expensive and usually reduce theperformance of threads even when they do not migrate. In Prelude, we follow the philosophy used inEmerald [JHB88]: the ability to migrate should have little or no e�ect on the performance of threadsthat do not migrate.Object migration mechanisms fall into two classes: those that depend on location independenceof names, and those that translate location-dependent names during migration. Location-independentnaming essentially requires a global naming scheme, either through a global address space [CAL+89, Li88]or though higher-level naming mechanisms, which use some form of indirection [PM83, MG89]. Onarchitectures with shared memory, Prelude can exploit the global address space to avoid translation.For architectures without a global address space, Prelude must use either a high-level naming schemeor translate names during migration. We have chosen the latter, since even though translation increasesthe cost of migration and message-passing, it signi�cantly improves the performance of threads thataccess local data [JHB88].Translation of addresses in objects is straightforward in Prelude; the translation of addresses inthread stacks is more challenging. A stack may have frames from several di�erent objects; thus, stackmigration in Prelude is designed around the migration of individual frames, and a single stack maybe spread across several processors. We use stub frames to handle transitions between processors. Thestub frames use messages to move arguments and return values between processors.A useful invariant for performance is the assumption that an executing frame and the object whosemethod it represents always reside on the same processor. This allows methods to access the object'sdata directly using pointers, which increases performance. During migration (across processors), thesepointers must be found and translated. We are also investigating an alternative technique for the case oflarge objects, where co-location may be expensive. This relies upon the introduction of invalid addresses

18 4 IMPLEMENTATIONfor migrated instance variable references and corresponding traps that perform remote accesses.A second invariant is that objects only migrate when all of their active methods are at migrationpoints. This allows a method to assume that its object will not migrate between migration points, whichleads to higher performance. Migration points are generally associated with invocation boundaries, somethods must check for migration upon return from an invocation.To avoid the migration checks at migration points, we have developed a novel approach based on amechanism called a �xup block . A �xup block is a short piece of code (generated by the compiler) thatperforms the translation for a particular frame; every migration point has a corresponding �xup block.After an object migrates, its active methods, which must be at migration points, resume execution in the�xup block instead of at the instruction following the migration point. The block performs any neededtranslations and then jumps to the instruction following the migration point. Thus, the migration checkis avoided except when an object migrates. Note that �xup blocks are generated automatically and arecompletely hidden from the user.To use �xup blocks to translate addresses when objects migrate, we need to be able to �nd the activemethods for a migrating object when the object migrates, so that the return program counters can beset to point to the appropriate �xup blocks. There are (at least) two ways to �nd the active methods:scan the stacks of all threads, or keep track of the threads (and stack frames) with active methods ineach object. Keeping track of the active methods imposes a signi�cant cost even when objects do notmigrate, which violates our design goals. Scanning the stacks at migration time imposes a cost onlywhen an object migrates, but the cost could be signi�cant (proportional to the total number of frameson all stacks).The following technique allows the stacks to be scanned for active methods more lazily. This spreadsthe cost out over subsequent computation that occurs after the migration, rather than incurring it allwhen the migration occurs. In addition, it allows the cost of scanning the stacks to be amortized overseveral migrations; if another object migrates before the stack scans have been completed, the unscannedframes will only be scanned once even though more than one object has migrated. The idea is to changethe top frame on each stack so it resumes at its �xup block; after performing any necessary translations,that �xup block changes the return program counter for the previous frame on the stack so it will resumeat its �xup block when the top frame returns. The cost when an object migrates is proportional to thenumber of threads, not the total number of stack frames, and if several objects migrate before a frameis scanned, the frame will be translated only once.

4.3 Pipes 194.3 PipesThis section describes our implementation of pipe objects. A pipe is made up of two objects, a headand a tail. Typically the head of a pipe will be located on the same processor as the thread makingcalls on the pipe, and the tail will be located on the same processor as the target object of the pipe. (Ifeither the calling thread or the target object migrates, the corresponding end of the pipe should also bemoved.) The head and tail objects both contain queues of pending invocations; bu�ering invocationsat both ends of the pipe allows the communication delay of the interconnection network to be largelyhidden from the computations using the pipe.To preserve the order of the invocations sent from the head to the tail we adopt one of two approachesdepending upon the underlying network architecture. In networks that do not preserve message order wesimply use sequence numbers in the messages for the invocations. In networks where the message orderbetween processors is maintained, we can avoid the sequence numbers and the associated overhead ofmaintaining them and checking them. This is done as follows. As long as neither the head nor the tail ofa pipe migrates, invocations can be streamed from the head to the tail and enqueued at the tail as theyare received, and order will be preserved. If the head migrates, we send a special marker message fromthe old head to the tail after the last message; the tail waits until the marker has been received beforeaccepting messages from the new head. Similarly, if the tail migrates, the old tail forwards messagesreceived from the head to the new tail, and informs the head that the tail has migrated. The headthen sends a marker to the old tail and starts sending messages to the new tail, which delays acceptingmessages from the head until the marker is forwarded from the old tail.5 Support for PrototypingCritical to the success of Prelude as a vehicle for studying languages and runtime systems is the abilityto experiment on a wide variety of MIMD architectures. To facilitate such experiments we have builta retargetable simulator, Proteus [Del91, Bre91, BDCW91], that simulates MIMD architectures andprovides support for sophisticated data collection and display.Proteus simulates MIMD multiprocessors in which independent processor nodes are connected viaan interconnection medium. The interconnection medium can be either a bus, a direct network such asa k-ary n-cube, or an indirect network such as a butter
y. Each processor node consists of a processor,a network module, a cache module, and memory. Conceptually, the processor is a generic sequentialprocessor extended with instructions for network access and cache coherence. The network moduleinterfaces the processor with the interconnection medium. The cache module, which is optional, handlescache coherence and works with the network module for remote memory accesses.

20 5 SUPPORT FOR PROTOTYPINGThe modules can be re�ned or replaced to provide more accurate simulation of a particular archi-tecture. It is also useful to have multiple implementations of a module that provide di�erent perfor-mance/accuracy tradeo�s. For example, for k-ary n-cubes, we use two implementations: one that is veryaccurate and simulates each packet hop by hop, and a second that uses an analytical model to computethe arrival time at the target. Although the model version is clearly less accurate, it is also an order ofmagnitude faster. When network accuracy is less important, such as during development, we use themodel version to exploit the higher performance.Proteus applications and modules are written in an extended version of C. Thus, our runtimesystem is written in C and the Prelude compiler generates C as its output. We then link the Proteusengine, the runtime system, and the compiled Prelude application into an executable that simulatesthe application on the speci�ed architecture. The compiler and runtime system are designed so thatthey should be relatively easy to port to a machine with a C compiler; we plan to port them to nCUBEand Intel machines in the near future.Since the combination of Prelude and Proteus is intended as a base for studying language andruntime-system issues, extensive support for debugging and monitoring is an important requirement.Proteus provides nonintrusive monitoring and debugging: users can add monitoring code that doesnot a�ect the behavior or timing of the simulation. It also provides repeatability: users can rerunsimulations to pinpoint bugs. Real multiprocessors generally provide neither of these abilities.Nonintrusive monitoring, combined with repeatability, greatly simpli�es the development of concur-rent programs. Real multiprocessor systems su�er from the probe e�ect: the addition of monitoringcode may cause the monitored e�ect to disappear [Gai86]. This prevents programmers from collectingadditional data for debugging. Proteus allows users to add arbitrary monitoring or debugging codewithout changing the behavior of the simulation.Nonintrusive monitoring is only useful if the platform ensures repeatability: the whole point of nonin-trusive monitoring is to allow repeatability in the presence of additional code. Nondeterministic systems,such as multiprocessors, rarely provide any form of repeatability; some bugs may occur only once everythousand (or more) executions, which makes it nearly impossible to track them down. Repeatability isperhaps the single most important feature of Proteus; its presence provides a debugging environmentthat is generally not available on real multiprocessors.The Prelude/Proteus combination has been designed to work well with sequential debuggers.This extends the power of advanced sequential debuggers to the parallel development arena. Further-more, Proteus provides an internal debugging mode that allows users to examine the state of threads,processors, locks, and memory. Using a sequential debugger such as dbx [Lin90] together with Proteusresults in a very e�ective development environment.

21While we designed Proteus initially as a substrate for experimenting with prototype language,compiler, and runtime system mechanisms, it has become clear that a simulator such as Proteuscan also be a useful tool for developing parallel applications. The monitoring capabilities provided byProteus can make debugging and initial performance tuning signi�cantly easier than on a real machine.Also, Proteus can be run on uniprocessor workstations so that the time required on expensive andscarce multiprocessors is less. In addition, the ability of an application program to scale to large machinesizes (perhaps beyond the range provided by available machines) or to be ported e�ectively to a rangeof machines can be investigated fairly easily.6 ConclusionsThe current Prelude implementation supports only single-frame migration for computations. Weare currently designing and implementing mechanisms and annotations for multiple- and partial-framemigration. In addition, we are studying how to add annotations for data replication and partitioning,based on ideas in Munin [BCZ90] and in Fortran D [F+90].The implementation of object migration in Prelude uses a novel approach based on �xup blocks.Fixup blocks eliminate the need to check at each migration point whether an object has migrated.Instead, at migration time the stack for each thread is modi�ed so that frames resume at a �xupblock, which does the appropriate checks and address translations. A further optimization allows themodi�cations to the stacks to be spread out over time as each frame returns to its caller, which reducesthe cost per migration as the frequency of migrations increases.Prelude is currently implemented on top of Proteus, a con�gurable simulator that provides bothfast and accurate simulations of a wide range of MIMD architectures. Proteus itself is a useful toolfor developing parallel applications, since it provides powerful non-intrusive debugging and performancemonitoring capabilities that are di�cult or impossible to obtain on a real machine. Much of the testing,debugging, and initial testing of an application can be accomplished using Proteus, typically with lesse�ort than would be required on a real machine. In addition, Proteus allows the programmer to testthe scalability and portability of a program, including a range of machine sizes and architectures notsupported by available machines. We are using Proteus to develop our initial prototype of Prelude,and plan to port the implementation of Prelude to commercial and research multiprocessors in thenear future. We have also used Proteus for a number of algorithmic and architectural studies.Prelude allows the programmer to write programs using an abstract model of computation that isindependent of any particular underlying architecture. A program can then be mapped onto a particularmachine by attaching annotations to it that describe the mapping. Our goal in Prelude is to provide

22 REFERENCESa comprehensive suite of mapping mechanisms that give the programmer su�cient power to implementa wide range of parallel programs e�ciently on a wide variety of MIMD architectures. To this end,we have included many mapping mechanisms that have appeared in other systems, including remoteprocedure call, object migration, and data replication and partitioning. In addition, however, Preludeinclude novel migration mechanisms for computations based on a form of continuation passing. Weare experimenting with our current implementation to evaluate the e�ectiveness of our current suite ofmapping mechanisms and to understand what other mechanisms or changes to our current mechanismsare needed.References[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,Cambridge, MA, 1986.[BCZ90] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based ontype-speci�c memory coherence. In Proceedings of the ACM Symposium on Principles andPractice of Parallel Programming, March 1990.[BDCW91] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A high-performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516,MIT Lab-oratory for Computer Science, 1991.[Ben87] J.K. Bennett. The design and implementation of Distributed Smalltalk. In Proceedings ofthe Object-Oriented Programming Systems Languages and Applications Conference, pages318{330, 1987.[Bre91] E.A. Brewer. Aspects of a high-performance parallel-architecture simulator. Master's thesis,MIT Laboratory for Computer Science, 1991.[CA89] M.D. Co�n and G.R. Andrews. Towards architecture-independent parallel programming.Technical Report 89-21a, Department of Computer Science, University of Arizona, December1989.[CAL+89] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Little�eld. The Ambersystem: Parallel programming on a network of multiprocessors. Technical Report 89-04-01,Department of Computer Science, University of Washington, April 1989.[Del91] C.N. Dellarocas. A high-performance retargetable simulator for parallel architectures. Mas-ter's thesis, MIT Laboratory for Computer Science, 1991.

REFERENCES 23[F+90] G. Fox et al. Fortran D language speci�cation. Technical Report COMP TR90-141, RiceUniversity, Dept. of Computer Science, December 1990.[For90] Parallel Computing Forum. PCF Fortran Proposed Standard, 1990. Version 3.[Gai86] Jason Gait. A probe e�ect in concurrent programs. Software { Practice and Experience,16(3):225{233, March 1986.[GG88] David K. Gi�ord and Nathan Glasser. Remote pipes and procedures for e�cient distributedcommunication. ACM Transactions on Computer Systems, 6(3):258{283, August 1988.[GR83] A. Goldberg and D. Robson. Smalltalk80: The language and its implementation. Addison-Wesley, Reading, MA, 1983.[Hal85] R. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Trans-actions on Programming Languages and Systems, 7(4):501{538, 1985.[JHB88] E. Jul, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACMTransactions on Computer Systems, 6(1):109{133, 1988.[LBG+88] B. Liskov, T. Bloom, D. Gi�ord, R. Schei
er, and W. Weihl. Communication in the Mercurysystem. In Proceedings of the 21st Annual Hawaii Conference on System Sciences, January1988. Available as MIT LCS Programming Methodology Group Memo 59.[LDH+87] B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens (editor), R. Schei
er, and W. Weihl.Argus reference manual. Technical Report MIT/LCS/TR-400, MIT Laboratory for Com-puter Science, November 1987.[LG86] B. Liskov and J. Guttag. Abstraction and Speci�cation in Program Development. MIT Press,1986.[Li88] K. Li. Ivy: A shared virtual memory system for parallel computing. In Proceedings of theInternational Conference on Parallel Processing, pages II78{86, 1988.[Lim84] INMOS Limited. Occam Programming Manual. Prentice Hall, Englewood Cli�s, New Jersey,1984.[Lin90] M. A. Linton. The evolution of dbx. In Proceedings of the 1990 USENIX Summer Conference,pages 211{220, June 1990.[LS88] B. Liskov and L. Shrira. Promises: Linguistic support for e�cient asynchronous procedurecalls in distributed systems. In Proceedings of the ACM SIGPLAN Conference on Program-ming Languages Design and Implementation, pages 260{267, 1988.

24 REFERENCES[Luc87] S.E. Lucco. Parallel programming in a virtual object space. In Proceedings of the Object-Oriented Programming Systems Languages and Applications Conference, pages 26{33, 1987.[LY81] P. L. Lehman and S. B. Yao. E�cient locking for concurrent operations on B-trees. ACMTransactions on Database Systems, 6(4):650{670, December 1981.[MG89] J.A. Marques and P. Guedes. Extending the operating system to support an object-orientedenvironment. In Proceedings of the Object-Oriented Programming Systems Languages andApplications Conference, pages 113{122, 1989.[MSA+85] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, W. Noyce,and R. Thomas. SISAL language reference manual. Technical report, Lawrence LivermoreNational Laboratory, March 1985.[MvR87] P. Mehrotra and J. van Rosedale. The BLAZE language: A parallel language for scienti�cprogramming. Parallel Computing, 5:339{361, November 1987.[PM83] M.L. Powell and B.P. Miller. Process migration in DEMOS/MP. In Proceedings of the NinthACM Symposium on Operating System Principles, pages 110{119, 1983.[Wan91] P. Wang. An in-depth analysis of concurrent B-tree algorithms. Master's thesis, MIT,January 1991.[WHH+92] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and S. Stornetta. Spawn: Adistributed computational economy. IEEE Transactions on Software Engineering, February1992. to appear.[WW90] W.E.Weihl and P.Wang. Multi-version memory: Software cache management for concurrentB-trees. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing,pages 650{655, 1990.

