
PRELUDE: A System for Portable Parallel Software

Wil l iam Weihl Eric Brewer Adr ian Colbrook
Chrysan thos Dellarocas Wilson Hsieh A n t h o n y Joseph

Carl Waldspurger Paul Wang *

Large-Scale Parallel Software Group
MIT Labora tory for Compute r Science

1 Introduction
We describe PRELUDE, a programming language and system for writing portable
MIMD parallel programs. PRELUDE supports a methodology for designing and orga-
nizing parallel programs that makes them easier to tune for particular architectures
and to port to new architectures.

A number of MIMD multiprocessors are now commercially available, and new
large-scale machines are being developed. Given the variety of architectures and
the cost of developing software, there is a clear need for support for writing high-
performance programs that are portable and scalable across a broad range of MIMD
architectures.

PRELUDE allows the programmer to write programs using an abstract model of
computation that is independent of any particular architecture. A program can then
be mapped onto a particular machine by attaching annotations to it. This allows
the programmer to separate the description of the computation to be performed by
a program from the description of how that computation is to be mapped onto a
machine. We provide most of the power of approaches that give the programmer
direct, low-level control while retaining most of the ease of use of purely automatic
approaches.

Our goal in PrtV.LUDV. is to provide a comprehensive suite of mapping mechanisms
that give the programmer sufficient power to implement a range of parallel programs
efficiently on a wide variety of MIMD architectures. To this end, we have included
many mapping mechanisms that have appeared in other systems, including remote
procedure call, object migration, and data replication and partitioning. In addition,
PRV4UDg includes novel migration mechanisms for computations based on a form
of continuation passing.

A complete version of this paper is available [1].

2 The P R E L U D E System
PRELUDE provides the programmer with a computational model based on objects
and threads that abstracts away from the underlying architecture, together with

�9 This work was support~ed by the National Science Foundation under grant CCR-8716884, by
the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-sg-J-1988 and
by an equipment grant from Digital Equipment Corporation. Individual authors were supported
by an Office of Naval Research Graduate Fellowship, a Science and Engineering Research Council
Postdoctoral Fellowship, National Science Foundation Graduate Fellowships, an IBM Graduate
Fellowship and an AT&T Graduate Fellowship.

972

high-level annotations that allow the programmer to control the mapping of a pro-
gram onto a particular machine. Concurrency is expressed explicitly in PRELUDE.

The annotations are used to describe and control the performance of the pro-
gram, not its functionality. For example, annotations can be used to express the
migration of objects and computations between processors in distributed memory
architectures. Since annotations affect performance but not functionality, the an-
notations can be freely changed without introducing errors into the program. This
separation of architecture-specific performance-related concerns from the rest of the
program makes it relatively easy to port or tune the performance of a program.

PRELUDE provides three types of invocations: synchronous, unordered asyn-
chronous, and ordered asynchronous. In a synchronous invocation, the calling thread
performs the invocation. Unlike synchronous invocations, an asynchronous invoca-
tion conceptually forks a new thread to perform the invocation. Unordered asyn-
chronous invocations avoid the software overhead required to maintain order and
are therefore simpler and faster than ordered invocations. However, in many situa-
tions a thread can run concurrently with a sequence of calls it makes but these calls
must be executed sequentially. A mechanism for ordered asynchronous calls leads to
programs that are both simpler to understand and more efficient than ones in which
the ordering is enforced by application-level synchronization. We introduce a new
mechanism, pipe objects, to support ordered asynchronous calls.

The runtime system incorporates novel mechanisms for migrating data and com-
putation in a distributed-memory multiprocessor. Existing systems have provided
reasonable flexibility in mapping data onto parallel machines (via partitioning, repli-
cation, and migration), but have provided only simple mechanisms such as remote
procedure calls for mapping logical threads. PRELUDE is designed to provide flexi-
ble control over the migration of computation, which allows a logical thread to be
mapped onto a number of different physical threads as the computation represented
by the logical thread migrates around the machine.

Parallel programs are difficult to test, debug, and tune. To accompany PRELUDE,
we have buil~ a retargetable simulator, PROTEUS [2], that provides extremely efficient
instruction-level simulation for a wide range of MIMD multiprocessors. Because of
its efficiency, accuracy and flexibility, PROTEUS has shown itself to be a useful tool
for prototyping, testing, and tuning parallel programs. We have built prototypes of
the PRELUDE compiler and runtime system using PROTEUS. We are experimenting
with our implementation to evaluate the effectiveness of our current suite of mapping
mechanisms and to understand what other mechanisms or changes to our current
mechanisms are needed.

R e f e r e n c e s
[1] W. Weihl, E. Brewer, A. Colbrook, C. Dellarocas, W. tIsieh, A. Joseph, C. Wald-

spurger and P. Wang. PaELUDE: A System for Portable Parallel Software. Technical
Report MIT/LCS/TR-519, MIT Laboratory for Computer Science, October 1991.

[2] E.A. Brewer, C.N. Dellarocas, A. Colbrook and W.E. Weihl. PROT~.US: A high-
performance parallel-architecture simulator. Technical Report MIT/LCS/Ttt-516,
MIT Laboratory for Computer Science, September 1991.

