Transparent, Low-Overhead Profiling on Modern Processors

Jennifer Anderson Lance Berc George Chrysos
Jeffrey Dean Sanjay Ghemawat Jamey Hicks = Shun-Tak Leung
Mitch Lichtenberg Mark Vandevoorde Carl A. Waldspurger N&fih E. Weihl
Compag Computer Corporation

Over the past two years, the Digital Continuous Profilingdsfructure (DCPI) research project at Compaq’s Systems
Research Center and Western Research Lab has been expleringays of profiling computer systems. We have developed
the DCPI tools, a suite of software profiling tools that pde/iransparent, low-overhead (0.5%-3.0% slowdown) pnaofitif
complete systems [1]. The DCPI tools run on Alpha micropssoes under Digital UNIX and Microsoft Windows/NT and
are freely available for downloading froht t p: / / www. r esear ch. di gi t al . comf SRC/ dcpi /.

The DCPI tools provide profile information at varying levefgranularity, from whole images, down to individual prece
dures and basic blocks on down to detailed information abmlitidual instructions, including information about dymic
behavior such as cache misses, branch mispredicts andfothres of dynamic stalls. Instruction-level stall inforrimat is
attributed to the instructions that actually incur suclistén contrast with some systems that attribute the infation to a
nearby instruction. This precise attribution is extremedgful when tuning code.

On in-order processors such as the Alpha 21064 and 2116thdlserely on periodic cycle counter interrupts and static
analysis of an executable image to provide instructiomileformation. On out-of-order processors, this appraaatot
feasible and we have designed a new form of hardware suppoiridtruction-level information calleBrofileMe which
can provide significant insight into the behavior of progsamnning on complex microprocessors (especially outrdép
processors) [2] ProfileMerequires only modest hardware modifications and can be usedbDCPI tools in a way that
collects detailed profile information without substanpedfiling overhead.

The DCPI profiling tools have several characteristics thettrayuish them from other profiling tools:

e Profiling is efficient, transparent and easy to use.The system has an overhead of 0.5%-3.0% slowdown for most
workloads, which is low enough that many users leave thelpmfsoftware turned on all the time. Unlike many
other profiling systems, there are no separate steps tongreparogram for profiling. When the system is turned
on, profiling happens transparently, for all activity on #rdire system. The fact that profiling is transparent and can
be left on all the time is important, since the omnipreserfgarafiling information encourages programmers to use
profiling data as a matter of course, rather than doing soinmyceptional circumstances. DCPI also stores all profiles
in a profile repository and automatically maintains the elsdimn of executable images to profiles. This means that
profiles remain valid and can be located even if executalpéesiaved or copied, freeing programmers from having to
explicitly manage profile files.

e The profiles provide instruction-level information. Most profiling tools in common use today measure instruction
execution frequencies (e.gi xi €). In today’s modern microprocessors, with deep memoryanidiies, sophisticated
branch predictors, and dynamic out-of-order executioelpips, instructions are not all the same. Execution counts
hide the distinction between a single-cycle add operatimhaload operation that takes a hundred cycles or more
to complete. Profiling tools such @s of that measure or estimate execution time instead of ingdrucbunts fix
this problem. However, most time-based tools can only shtwere/time is being spent and are unable to provide
much insight into why particular regions of code are consuntime. Often the reasons for a stall are not immediately
obvious even to those knowledgeable about a CPU’s micrdeaothre, and to those programmers that are not inti-
mately familiar with the hardware details of the procestier reasons for a stall are often quite mysterious. To addres
this, the DCPI tools identify instructions that stall andaldentify the potential cause(s) for the stallg.data cache
miss, branch mispredict, etc.). Many users of DCPI toolehalied on this instruction-level insight to significantly
improve the performance of their programs, and we are wgrimvarious automatic compiler optimizations that take
advantage of this kind of information.

Chrysos is at Digital Semiconductor (chrysos@vssad.atoadm), Hicks is with the Cambridge Research Lab (jamel@w.com), Anderson

and Dean are with the Western Research L§Jenpifer,jdeaf@pa.dec.com), and the remaining authors are with the Sgstesearch Cen-

ter ({berc,sanjay,sleung,mitch,mtv,caw,wéi@pa.dec.com). More information about profiling researchCempaq can be found on the Web at
http://ww.research. digital.com SRC/ dcpi /.

e The profiles cover the entire system.DCPI profiles the entire system, including executable paogy, shared li-
braries, device-drivers, and the operating system keBwtlenecks can show up in any of these places, and the trend
in modern applications is to separate programs into a gigpwirmber of shared libraries and often into multiple com-
municating processes. Therefore, it is increasingly irtgpdrto be able to profile the entire computer system, rather
than just a single application.

Perhaps the most unusual aspect of the DCPI toolsPaofileMe hardware is their ability to deliver instruction-level
information about cache misses, branch mispredicts arel aynamic stalls, with the information attributed to theaetx
instruction(s) that experience these events.

The technique for gathering instruction-level informatiiffer depending on whether or not the profiling is being @on
on an in-order or out-of-order processor. We begin by disiagshow we collect instruction-level information for tleetsvo
classes of processors, and then discuss some applicatimssroction-level profiling information in the context pfogram
optimizations. Further details about the profiling softevand hardware can be found in two other papers [1] [2].

Gathering Instruction-Level Information on In-Order Proc essors: PC Sampling

On in-order processors, the DCPI tools rely on gatheringpasnof the program counter valued) randomly using a
periodic cycle counter interrupt, producing sample counts whose expected value for each instructicoppptional to the
total time spent executing that instruction. On the in-ordlpha 21064 and 21164 processors (and on many other ir-orde
processors), the “total time” measured by #esamples for an instruction is the number of cycles for whingt tnstruction
was the next instruction to be issued. For example, a lodduct®n that takes 10 cycles on average will accumulate 10
times as manyc samples as will an add instruction in the same basic blodka&kas only one cycle on average to execute.
By analyzing the sample data for groups of frequency-edgitanstructions (instructions that are guaranteed tcebee
the same number of times), it is possible to estimate an ¢éxeduequency and an average cycles-per-instructioreien
value for each instruction in the program. Once this is daneariety of heuristics are used to help explain why paréicul
instructions take longer to execute than their ideal casewgion behavior. Explanations considered include datheeand
instruction cache misses, data and instruction TLB midses)ch mispredicts, and various other forms of dynamidsstal
The approach taken is to consider all the considered reasopassible and to have the heuristics rule out cases thabttan
happen or that are extremely unlikely. For example, theilgtifor an instruction cache miss considers this as a plessi
stall reason for instructions that start a basic block ot #na at the beginning of an instruction-cache line. Heiggdor
other stalls have a similar flavor. These heuristics are tabharrow down the set of possible causes for a stall to onéy on
or two possible reasons 80% of the time, and often (56%) camwahe cause down to a single reason. These analyses
depend on the fact that the Alpha 21064 and 21164 processoig-arder processors, and are also helped by the fact that
the pipelines of these processors are relatively simple.

Gathering Instruction-Level Information on Out-of-Order Processors: ProfileMe Hardware

Although the techniques described above work effectivefyiri-order processors, they break down for out-of-order pr
cessors, because the number of samples for a gigés no longer proportional to the amount of time spent exegutihe
instruction. To gather instruction-level information aimchk processors, we have develogtdfileMe a new form of hard-
ware support for performance measurememnsfileMediffers from the traditional hardware event counters palediby most
processors. While event counters provide useful aggrégfatenation, such as the total number of branch mispredigtsg
a program run, they do not accurately attribute these eventslividual instructions. The reason is that the instircthat
caused an event resulting in an event-counter overflow iallysearlier, by an unpredictable amount, than the insionct
whoseprc is delivered to the interrupt handler handling the eveninteuoverflow. Thus, sampling of events such as data
cache misses or branch mispredicts using event countezs gamples that are "in the neighborhood” of where the event
has occurred, but it is often difficult or impossible to idgnthe exact instruction that caused the event. Out-okoahd
speculative execution amplify this problem, but it is présa/en on in-order machines.

The approach used ProfileMeis quite different. Rather than countiegentsand sampling the program counter when the
event counters overflow, we samjiestructions We introduce a software-loadable counter that countséeténstructions.
As each instruction is fetched by the processor, the cowatee is incremented. When it overflows, hardware hardware
in the fetch unit tags the next instruction to be fetched asadiled instruction. As a profiled instruction executes,easth
logic in the processor pipeline records information abtsuékecution in internal registers. Information recordedudes the
instruction’spc, the number of cycles spent in each pipeline stage, whdtheffered I-cache or D-cache misses, the effective
address of a memory operand or branch target, and whetlediréd or why it aborted. After the instruction completeg, w
generate an interrupt and deliver the recorded informatosoftware. This approach has several benefits. Firsthall t
recorded information is directly attributed to the value that was recorded for the instruction. Second, a sisgiple

delivers an entire record of what happened to an instructioing its execution. This is in contrast with an event ceunt
which delivers only unattributed information about a senglent, without any correlation to other events in the systgy
aggregating th@rofileMesamples for multiple executions of the same instructiortricgesuch as branch mispredict rates or
data cache miss ratés individual instructionscan easily be estimated. By using the per-pipeline-stagadg information,
information about which instructions are stalled in whightp of the processor can be obtained.

TheProfileMehardware gives a detailed record of what happened to a simgjteiction during its execution. However, on
out-of-order processors, even knowing which individuatinctions have stalled in various pipeline stages is rifitgnt to
understand the performance impact. Since out-of-ordexuian is explicitly designed to mask stalls of individuastruc-
tions, it is important to be able to understand what othdvificis going on in the machine at the time that the instroiati
was executing. For example, consider an instruction thatrasa 20 cycle stall sitting in the issue queue waiting foddata
operands to becomes available. Is such an instruction dgmnGbOn an in-order processor, the answer is a definitive yes:
progress for all subsequent instructions is block by tha#i.sbn an out-of-order processor, the answer is maybe eifetlis
sufficient concurrency available in the code stream sudmgnthe instruction that the stall can be masked by perfogmi
other useful work, then the stall is not a problem. To underdtperformance bottlenecks on out-of-order procesdass, i
important to also be able to measure instruction-level aoeacy. Through the use ghired samplingwhich replicates
the ProfileMe hardware to permit the simultaneous samplirtgg@ potentially concurrent instructions, we can examine t
overlap of pairs of samples, and by aggregating many suak,p@é can use statistical analyses to estimate a variety of
interesting concurrency metrics for individual instrects, such as number of retired instructions while the icsion was
in flight, or number of wasted issue slots while the instruttivas in flight [2].

Uses of Instruction-Level Information

The DCPI tools have been widely used both within Compaq ateteally by a number of other companies and universi-
ties. Much of their use arises in examining the performariexisting programs and systems to manually tune performanc
For example, they have been used extensively to improvedtie generated by Compagq’s production compiler for UNIX
and Windows/NT. Use of our tools led to improvements in theéecgeneration of the compiler that produced a 20% speedup
in severalsPE®@5 benchmarks. Similarly, our tools identified D-cachelstas the major problem in the inner loop of a
major Windows/NT benchmark; a combination of prefetching hoisting loop-invariant loads out of the loop yielded @ko
speedup of about 20%. Use of our tools pinpointed a perfoceproblem in running one query of a widely-used decision-
support database benchmark, and fixing this problem rekirita factor of 20 speedup for this piece of the benchmark.
Similar results have been obtained on a wide range of pragram

In addition to manual tuning, we are investigating usingded! instruction-level information about stalls and ttegiuses
to drive automated optimizations. For example, we are logkit prefetching based on measured latencies for loadgtand
reorganizing data structures with poor cache performamoeduce pollution of the cache by data that is never used.

Conclusions

The DCPI tools demonstrate that low-overhead transpametrtiction-level profiling of complete systems is possibted
our experiences and those of our users have shown thatdtistrdevel information is extremely helpful in understiimy
how programs perform on modern machines. On in-order psocssnstruction-level information can be obtained simply
with periodic interrupts. The development®fofileMewill enable the same sort of low-overhead transparentuostn-
level profiling on out-of-order processors. To date, thériedion-level information has proved invaluable in doimgnual
tuning of computer programs and systems. We are continainmeitform research on using this kind of instruction-level
information to drive automatic optimizations.

Acknowledgments

We would like to thank all of the people involved with the DC&td ProfileMe projects, including Monika Henzinger,
Scot Hildebrandt, Jim Keller, Rick Kessler, Dan Liebhold, BcLellan, Dick Sites, Gerard Vernes, and Jon White, foirthe
significant contributions to these projects. In additiogny users of DCPI have contributed valuable feedback tha ha
greatly improved the usability of the DCPI tools.

References

[1] J. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. HageinS.-T. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldgpr,
and W. E. Weihl. Continuous profiling: Where have all the egajone? IACM Transactions on Computer Systepeges 357—-390,
Nov. 1997. An earlier version appears in fc. of the 16th Symp. on Operating System Princj@é¢sMalo, France, Oct. 1997.

[2] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, andOB&rysos.ProfileMe Hardware support for instruction-level profiling on
out-of-order processors. Proc. 30th Annual Intl. Symp. on Microarchitectuf@ec. 1997.

