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simple mechanism that e�ciently supports 
exible,variable-size processor contexts with minimal hard-ware support. The register relocation hardware shoulda�ect only the instruction decode stage of the proces-sor pipeline, and would be a simple addition to manyexisting architectures.Existing multithreaded architectures typically pro-vide several separate, �xed-size contexts managed inhardware. This �xed, in
exible division of the regis-ter �le often results in a signi�cant waste of scarcehigh-speed registers. More e�cient partitioning ofthe register �le would permit a larger number of res-ident contexts. Since the optimal number of contextsis both application- and machine-dependent [19], en-ablingmore resident contexts will allow programs withsu�cient parallelism to tolerate longer latencies andshorter run lengths. Alternatively, better utilizationof the register �le would permit a smaller register �leto support a given number of contexts, which has ar-chitectural advantages in terms of chip area and pro-cessor cycle-time [11].Register relocation adheres to the RISC philoso-phy [17] by maintaining a simple processor architec-ture and relying upon the compiler and runtime sys-tem to manage the allocation and use of contexts. Wediscuss several runtime-level software techniques thatexploit the register relocation hardware, managing thedivision of the register �le into contexts in software.Because the size of contexts is not dictated by thehardware, there is considerable 
exibility in the use ofthe register �le to support multithreading. Possibleorganizations range from static partitioning into con-texts with �xed or varying sizes to dynamic allocationof contexts with varying sizes as needed. The 
exi-bility to provide a better match between applicationrequirements and the organization of the register �leinto contexts enables better utilization of scarce reg-isters, which allows more resident contexts and higherprocessor utilization. Our experiments show that reg-ister relocation can improve performance by a factorof two or more for many workloads.



Improvements in processor utilization can be ex-pected whenever more contexts are able to remainloaded through an e�cient partitioning of the register�le. This is likely to be a common case, since manythreads cannot make e�ective use of a large number ofregisters. Moreover, most programs exhibit decreasingmarginal performance improvements as the number ofavailable registers is increased. For example, one per-formance study [9] revealed a pattern of decreasingmarginal savings in memory references as the numberof available registers is increased. Another [5] foundthat even in workloads containing programs with largebasic blocks, the degradation in execution time given16 registers instead of 32 averaged only 12%; the im-provement given more than 32 registers averaged only1%. This study also showed that sophisticated codegeneration strategies require fewer registers. We be-lieve that these e�ects are likely to be even more pro-nounced in systems with many �ne-grained threadsand sophisticated optimizing compilers.In the next section, we discuss the hardware andsoftware support required for register relocation. Sec-tion 3 discusses the results of several quantitative ex-periments comparing register relocation to conven-tional multithreaded architectures. In Section 4, weexamine related work. Extensions and directions forfuture research are discussed in Section 5. Finally, wesummarize our conclusions in Section 6.2 Register RelocationThe register relocation mechanism is very simple.Instruction operands specify context-relative registernumbers, which are numbered consecutively startingwith register 0. These context-relative register num-bers are dynamically combined with a special registerrelocation mask (RRM) to form absolute register num-bers that are used during instruction execution. Abitwise OR is used as the combining operation.The OR operation permits a 
exible division be-tween the number of RRM bits treated as the registerrelocation base, and the number of register operandbits treated as the register relocation o�set, as shownin Figure 1. This simplemechanism allows the register�le to be partitioned into a collection of variable-sizecontexts. For example, the register �le can be dividedinto a small number of large contexts, as is convention-ally done in hardware. Alternatively, the register �lecan be divided into a large number of small contexts,providing support for many �ne-grained threads. Theregister �le can also be divided, statically or dynami-
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Figure 1: Register Relocation Examples. In both ex-amples, there are a total of 128 general registers, theRRM is 7 bits wide, and register operands are 5 bitswide. The shaded portions of registers are e�ectivelyunused. (a) The RRM provides relocation for a con-text of size 8. Context-relative register 5 is relocatedto absolute register 45. (b) The RRM provides reloca-tion for a context of size 16. Context-relative register14 is relocated to absolute register 46.cally, into di�erent combinations of context sizes, sup-porting a mix of both coarse and �ne-grained threads.2.1 Hardware SupportA register relocation mask (RRM) is maintained ina special hardware register. The RRM register requiresdlgne bits for a processor architecture with n generalregisters. A special LDRRM R instruction is used to setthe RRM from the low-order dlg ne bits of register R. De-pending on the organization of the processor pipeline,there may be one or more delay slots following a LDRRMinstruction.RISC architectures typically employ a �xed-�elddecoding scheme in which register operands are alwaysspeci�ed at the same location within an instruction[18]. During every instruction decode, a bitwise ORoperation is performed with each of the instruction'sregister operand �elds and the RRM, yielding relocatedregister operand �elds, as shown in Figure 2. After theinstruction decode phase, no additional work needs tobe performed.Another hardware change that would be necessaryin some architectures is to widen the internal pathsthat carry the register operands speci�ed by an in-struction. This is because a relocated register operandrequires dlgne bits to address the entire register �le,while a register operand �eld in an instruction mayonly be able to address a smaller portion of the regis-ter �le, due to limitations on the width of a machineinstruction. We will denote the width of an instruction



Opcode Function

OR OR OR
RRM

Reg
src1

Reg
src2

Reg
dest

Relocated Relocated Relocated

Reg
src1

Reg
src2

Reg
destFigure 2: Register Relocation Hardware. During in-struction decode, a bitwise OR is performed with eachof the instruction's operands and the RRM, yielding re-located register operands.register operand by w, which constrains the numberof addressable registers and places an upper bound of2w on the size of a single context.2.2 Context SchedulingUnlike multithreaded architectures with hardwarecontrol over scheduling [2, 10, 12, 22], we schedule con-texts entirely in software. We have developed an ap-proach for very fast context switching that does not re-quire hardware support or the use of a separate sched-uler context. Sample assembly-language code for thisfast context switch is listed in Figure 3. The scheduler\ready queue" for loaded contexts is implemented asa circular linked list of register relocation masks. Thislist is maintained by storing a NextRRM mask in eachresident context. A transfer of control to the nextrunnable thread context is implemented as follows:� Store the current program counter in a registerassociated with the current context. In the listedcode, context-relative register R0 is used to storethe PC.� Execute a LDRRM instruction to install the regis-ter relocation mask for the next thread context.Depending on the organization of the processorpipeline, there may be one or more delay slotsfollowing this instruction. In the listed code, R2is used to store the NextRRM relocation mask, andthere is one delay slot.� If necessary, save any processor state that mustbe restored when the current thread is resumed.When the newly installed RRM becomes active, re-store any processor state associated with the new

| Context-Relative Register Conventions|| R0: thread program counter (PC)| R1: processor status word (PSW)| R2: mask for next thread (NextRRM)fault: | jump and link; save next PC in r0jalr yield, r0...yield: | install new relocation mask,| save old status register| (single ldrrm delay slot)ldrrm r2mov PSW, r1| restore new status register,| execute code in new contextmov r1, PSWjmp r0Figure 3: Context Switch Code. The instruction la-belled fault may be explicit (as shown), or the re-sult of a trap. The register move (mov), unconditionaljump (jmp), and jump and link (jalr) instructions aresimilar to those found in many RISC architectures.The LDRRM instruction is described in Section 2.1.context.1 In the listed code, a processor statusword (PSW) is stored in R1.� Jump to the program counter associated with thenew context.This approach requires approximately 4 to 6 RISCcycles, depending on the number of LDRRM delay slotsand the need to save and restore processor status in-formation. More sophisticated scheduling policies canalso be implemented by altering the order in whichcontexts are linked together by their NextRRM masks.For example, separate linked lists of register reloca-tion masks could be maintained to implement di�erentthread classes or priorities. Such 
exibility is possiblebecause context scheduling is under software control.1On some architectures, condition codes such as carry 
agsmust be preserved. This is unnecessary on architectures whichdon't use condition codes, such as the MIPS R3000. At theother extreme, architectures such as the SPARC may requireexpensive traps to manipulate this state.



2.3 Context AllocationThe register relocation mechanism can allocate acontext with size 2k registers, for 0 � k � w; themaximum context size is limited to 2w by the numberof address bits used for register operands. However,the minimum context size should be large enough tomaintain some state other than a program counter.For example, practical context sizes for an architecturewith 256 registers and 6-bit register operands wouldbe 4, 8, 16, 32, and 64 registers.Context allocation is performed entirely in soft-ware, and is thus extremely 
exible. One option isto partition the register �le statically into contexts(with identical or di�ering sizes) for a particular ap-plication, which makes allocation and deallocation ex-tremely inexpensive. Another option is to partitionthe register �le dynamically into contexts of varyingsizes as needed.For the experiments discussed in Section 3, wecoded general-purpose dynamic context allocation anddeallocation routines for a RISC architecture with 128registers. The implementation employs simple shiftand mask operations to search an allocation bitmapfor available contexts. Linear search is used for somecontext sizes, and binary search is used for others.General-purpose allocation executes in approximately25 RISC cycles, and general-purpose deallocation re-quires fewer than 5 RISC cycles.2 Sample C code forgeneral-purpose allocation is listed in Appendix A.2.4 Compiler SupportCompilers can generate code as usual, and may as-sume that the available registers are numbered from 0to 2w�1. Although the compiler is permitted to use all2w registers, many threads will require fewer registers.For each thread, the compiler must inform the runtimesystem about the number of registers that the threadrequires, which can be determined by traversing thethread call graph. In systems that support separatecompilation, the compiler will need to provide thisinformation to the linker. However, this should notpresent any di�cult challenges; more sophisticated co-operation between compilers and linkers has alreadybeen demonstrated for register allocation [23].The register relocation mechanism also presentssome interesting opportunities for compiler optimiza-tions. As noted in Section 1, most programs real-2If an operation such as theMotorolaMC88000's FF1 instruc-tion is available that can �nd the �rst bit set in a word, thengeneral-purpose allocation can be performed in approximately15 RISC cycles.

ize decreasing marginal improvements from additionalregisters. A compiler can thus make tradeo�s be-tween allocating additional registers to a thread orusing fewer registers to enable more resident contexts.For example, a compiler may normally achieve somemarginal bene�t by allocating 17 (versus 16) registersto a thread; there is no reason to conserve registers ifthey would otherwise be wasted. However, due to thepower-of-two constraint on context sizes, a thread thatuses 17 registers will require a context of size 32. The15 extra registers that are consumed could instead beused to support a higher degree of multithreading, andthe corresponding increase in processor utilization islikely to exceed the original gain from using an extraregister.Finally, by guaranteeing not to use any additionalregisters, the compiler { not the hardware { is respon-sible for ensuring protection among thread contexts.However, similar protection issues arise for memory lo-cations due to the execution of multiple threads withina single address space. Note that we are assuming thatthreads are associated with a single application, andhence are logically related. Thus, erroneous registeroverwrites are not inherently more problematic thanmemory overwrites; they simply occur at di�erent lev-els in the memory hierarchy. In order to facilitatelow-level debugging of compilers and runtime systemroutines, a separate tool could be used to staticallycheck executables or object �les for most violations ofcontext boundaries.32.5 Context LoadingThe register relocation mechanism requires thecompiler to determine the number of registers neededby each thread, as described in Section 2.4. This in-formation can also be exploited to save or restore theexact number of registers used by a thread when itscontext is loaded or unloaded. The runtime systemcan provide one context unload routine that succes-sively stores registers numbered 2w�1 to 0 to memory,with 2w separate entry points corresponding to everypossible number of context registers used by threads.Similarly, a single context load routine with multipleentry points can be provided to successively load reg-isters from memory.3One of the referees suggested the use of MUXs to selecteach bit from either the RRM or the register operand; this mightbe faster in CMOS than an OR, and would also prevent a threadfrom accessing registers outside its allocated context. Alter-natively, hardware could be added for \bounds checking" oncontexts.



Parameter Description (units)R average run length (cycles)L average fault latency (cycles)S context switch cost (cycles)F register �le size (registers)C required context size (registers)Cost (cycles)Operation Flexible Fixedcontext allocate (succeed) 25 0context allocate (fail) 15 0context deallocate 5 0context load/unload C Cthread queue insert/remove 10 10Figure 4: Parameters and Assumptions. The �rst ta-ble describes the experimental parameters. The sec-ond table lists the cost assumptions used for both theregister relocation (Flexible) and conventional �xed-size contexts (Fixed) architectures.3 ExperimentsWe ran a large number of experiments, over a widerange of system parameters, to evaluate the registerrelocation mechanism. The experiments focus on asingle multiprocessor node executing multiple threadswith stochastic run lengths and varying fault latencies.We assume a coarsely multithreaded processor archi-tecture similar to APRIL [2], which switches contextsonly when a high-latency operation such as a remotecache miss or synchronization fault occurs. We con-ducted our experiments using Proteus [6], a high-performance parallel architecture simulator, which wemodi�ed to support multiple contexts.Below we discuss several experiments involving onlycache faults, and others involving only synchronizationfaults. We also ran experiments involving both typesof faults, with similar results; the main e�ect was toincrease the overall fault rate. The data presentedin this paper is representative of our experimental re-sults; additional experiments appear in [24].3.1 Parameters and AssumptionsIn each experiment, a supply of synthetic threadswas created with particular fault rates and fault ser-vice latencies. All threads executed until completion,and statistics were extracted over a substantial frac-tion of the execution that avoided transient startup

and completion e�ects.4 Our experimental parame-ters are summarized in Figure 4.For each set of parameters, we performed two ex-periments: one to simulate a conventional multi-threaded processor architecture with �xed hardwarecontexts, each containing 32 registers, and another tosimulate an architecture using the register relocationmechanism. In both experiments, local thread queueinsertion and removal operations cost 10 cycles, andloading contexts frommemory and unloading contextsto memory cost 1 cycle per register. An additionalcharge of 10 cycles was assessed for the software over-head of blocking and unblocking contexts when load-ing and unloading.For register relocation, successful context allocationand deallocation cost 25 and 5 cycles, respectively, andunsuccessful context allocation was charged 15 cycles.These costs are consistent with the general-purposedynamic allocation routines listed in Appendix A. Forthe conventional hardware architecture with �xed con-texts, these costs were all set to 0, assuming somehardware support for context scheduling. This as-sumption was deliberately conservative for comparisonwith the register relocation approach.3.2 Tolerating Cache FaultsThe experiments described in this section explorethe use of multithreading to hide the latency asso-ciated with remote memory references. In each ex-periment, the average run length between cache faults(R) is geometrically distributed, and the average cachefault latency (L) is constant. Thus, there is a �xedprobability of a cache miss on each execution cycle,and network response time is uniform, which is reason-able for lightly loaded networks. These distributionsare also consistent with the assumptions and modelsused in earlier studies [3, 19]. The context switch costis set to S = 6 cycles, which is consistent with thecode presented in Figure 3, and better than the 11cycle cost incurred by the current APRIL implemen-tation [2]. To avoid e�ects due to the selection of aparticular thread unloading policy, contexts are neverunloaded.Figure 5 summarizes many experiments; each datapoint represents a separate simulation. The graphsplot e�ciency (i.e., processor utilization) vs. memorylatency for a family of curves corresponding to variousrun lengths. The solid curves denote results for �xed-size hardware contexts, and the dotted curves denote4We also collected statistics from entire runs; these di�eredonly slightly from the statistics that excluded transients.



results for register relocation. For these experiments,the number of registers required by each context (C)is uniformly distributed between 6 and 24 registers.Due to the power-of-two constraint on context sizesfor register relocation, these experiments are biasedtoward large contexts. Despite this bias, register re-location consistently outperforms conventional �xed-size contexts, resulting in signi�cantly higher e�cien-cies over a wide range of values for L and R. Thus,even for workloads consisting of many large contextsand few small contexts, more contexts remain resident,improving processor utilization.3.3 Tolerating Synchronization FaultsThis section describes experiments that examinethe use of multithreading to hide the latency asso-ciated with synchronization events. In each exper-iment, the average run length between synchroniza-tion faults (R) is geometrically distributed, and theaverage synchronization fault latency (L) is exponen-tially distributed. Thus, there is a �xed probability ofa synchronization fault on each execution cycle, andwait times for synchronization are exponentially dis-tributed, which is reasonable for producer-consumersynchronization [14]. The context switch cost is set toS = 8 cycles, which is 2 cycles more than the cost usedin Section 3.2. This allows for simple bookkeeping andtest operations (e.g., an add and conditional branch)which can be used to implement a thread unloadingpolicy. The thread unloading policy used in these ex-periments is a competitive, two-phase algorithm [14].A context is unloaded when the cost of repeated, un-successful attempts to continue execution equals thecost of unloading and blocking the context. Note thatthe cost assessed for loading and unloading a contextis based on C, the number of registers required bythe context (see Section 2.5), not on the size of theallocated context; this is true for all our simulations.Since conventional architectures with �xed-size con-texts typically save and restore all registers allocatedto a context, including unused ones, our experimentsconservatively overestimate the performance of con-ventional approaches using hardware contexts.Figure 6 summarizes the results for synchronizationfaults; each data point represents a separate simula-tion. The graphs plot e�ciency vs. synchronizationlatency for a family of curves corresponding to vari-ous run lengths. The solid curves denote results for�xed-size hardware contexts, and the dotted curvesdenote results using register relocation. For these ex-periments, the number of registers required by eachcontext (C) is uniformly distributed between 6 and
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(b) F = 128, C = [6 .. 24]
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(c) F = 256, C = [6 .. 24]Figure 5: Cache Faults. E�ciency for F = 64, 128,and 256 registers, and C uniformly distributed from6 to 24 registers. Curves: solid { �xed-size contexts,dotted { register relocation. Data points: circles {R = 8, squares { R = 32, triangles { R = 128.
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(b) F = 128, C = [6 .. 24]
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(c) F = 256, C = [6 .. 24]Figure 6: Synchronization Faults. E�ciency for F =64, 128, and 256 registers, and C uniformly distributedfrom 6 to 24 registers. Curves: solid { �xed-size con-texts, dotted { register relocation. Data points: circles{ R = 32, squares { R = 128, triangles { R = 512.

24 registers. As explained earlier, this distribution isbiased toward large contexts.Register relocation improves processor utilizationfor virtually all parameter values. The only notableexception is provided by Figure 6(a), in which rela-tively large contexts are competing for a small reg-ister �le (F = 64). As L increases, the advantagesprovided by register relocation diminish, and �xed-size hardware contexts marginally outperform registerrelocation for large L. This is due to the software over-head associated with context allocation in the registerrelocation approach. When the register �le is smalland contexts are large, contexts are continually loadedand unloaded for small R and large L, resulting in alarge number of allocation operations. Re-executingthe experiments in Figure 6(a) with lower allocationcosts con�rmed this explanation; in this case regis-ter relocation consistently outperformed the �xed-sizecontexts. Recall that allocation costs were set to 0 forthe �xed-size hardware contexts in order to conser-vatively overestimate the performance of conventionalapproaches. If workload parameters similar to thosein Figure 6(a) were common, a di�erent, specializedallocation policy could be adopted. For example, twosets of context sizes could be implemented extremelycheaply; an allocation bitmap for contexts of size 16and 32 can be encoded in four bits, and a direct lookuptable indexed by this bitmap could be used to allocatecontexts. The 
exibility of performing allocation insoftware makes such schemes possible.Nevertheless, even with a general-purpose dynamicallocation policy, register relocation still results in sub-stantial e�ciency gains over a wide range of values forL and R. Thus, for most workloads, we expect registerrelocation to enable more resident contexts, making itpossible to improve processor utilization by toleratinglong synchronization latencies.3.4 DiscussionWe also performed numerous experiments similarto those presented above, using homogeneous contextsizes C = 8 and C = 16. The results were similarto those presented in Figures 5 and 6, but the rela-tive improvements due to register relocation were of-ten substantially larger [24]. This is not surprising,since the primary e�ect of smaller context sizes is toincrease the number of contexts that can be supportedby a given register �le.Register relocation signi�cantly outperforms �xed-size hardware contexts over a wide range of systemparameters, sometimes by huge margins. By provid-ing the 
exibility to e�ciently partition the register



�le, scarce register resources are better utilized, al-lowing more contexts to remain resident. The numberof resident contexts has a dramatic impact on proces-sor utilization. As run lengths decrease and latenciesincrease, more contexts are needed to prevent the pro-cessor from idling. This trend is clearly indicated bythe data presented in Figures 5 through 6, and canalso be explained analytically.A simple mathematical analysis of multithreadedarchitectures [19] reveals that for constant run lengthsand latencies, processor e�ciency can be determinedfrom the parameters R, L, and S.5 When there is al-ways a resident context that is ready to execute, theprocessor is saturated, and its e�ciency is indepen-dent of L: Esat = RR+S . When the number of residentcontexts is below the saturation point, the processorwill not be fully utilized, and its e�ciency is linear inthe number of resident contexts (N ): Elin = NRR+S+L .Thus, processor e�ciency increases linearly in thenumber of resident contexts until saturation, afterwhich it remains constant. From these two equations,we �nd that for N < 1 + LR+S , processor e�ciencyis in the linear region. Given current trends towardlarge parallel machines and extremely fast processors,we expect R to decrease and L to increase, requir-ing a large number of contexts before processor e�-ciency saturates. Thus, systems with a small numberof hardware contexts are likely to operate in the lin-ear regime, where register relocation can substantiallyimprove performance.Some earlier studies have suggested that only asmall number of contexts (2 to 4) is required to achievehigh processor utilization [2, 25]. Although it is truethat a small number of contexts signi�cantly boosts ef-�ciency for relatively low L and su�ciently high R, theoptimal number of contexts is both application- andmachine-dependent [19]. For example, the Horizon ar-chitecture [22] provides 128 hardware contexts in orderto tolerate long latencies and short run lengths. More-over, even proponents of a small number of hardwarecontexts agree that a large supply of runnable, loadedcontexts is needed to tolerate synchronization laten-cies, which are typically much longer than latencies forremote memory access. For example, additional hard-ware for dribbling registers is currently being exploredby the APRIL designers for tolerating longer latencies[20].6 Our register relocation mechanism provides a5A considerably more complex analysis is also presented in[19] that accounts for stochastic run lengths. However, the sim-pler equations for the deterministic case still provide a reason-able approximation for processor e�ciency.6The dribbling registers idea is completely orthogonal to theregister relocation mechanism.

simple, e�ective alternative to increasingly complexand specialized hardware solutions.4 Related WorkMost multithreaded processor architectures employhardware-intensive and in
exible mechanisms for mul-tithreading. Our approach is software-intensive, andattempts to minimize the hardware required to sup-port multithreading e�ciently and 
exibly. In thissection we compare register relocation in more detailto other approaches.A number of processor architectures with multiplehardware contexts have been proposed. Finely multi-threaded processors, such as the Denelcor HEP [21],execute an instruction from a di�erent thread on eachcycle. A drawback to this approach is that the inter-leaving of threads in the processor pipeline degradessingle-thread performance. Also, these processors re-quire a steady supply of runnable threads that canbe interleaved cycle-by-cycle to keep the processorpipeline busy. The more recent MASA architecture[10] also su�ers from this problem. The Horizon andTera architectures [4, 22] also switch among instruc-tion streams on every cycle, but allow several instruc-tions from the same thread to co-exist in the pipeline.Coarsely multithreaded processors, such as APRIL[2], execute larger blocks of instructions from eachthread, and typically switch contexts only when ahigh-latency operation occurs. A drawback to thisapproach is that a context switch typically bubblesthe processor pipeline, degrading multithreaded per-formance. Hybrid data
ow / von-Neumann architec-tures [12, 15] also have pipelines that only contain in-structions from a single thread, and typically providesupport for hardware task queues.Most of the architectures described above maintaina �xed, in
exible division of high-speed register re-sources into multiple contexts. Our register reloca-tion mechanism supports coarse multithreading, butpermits unusual 
exibility in the organization of theregister �le by managing contexts in software. Con-text scheduling is also performed entirely in software,yet only a few RISC cycles are required to implementa context switch.The AMD Am29000 processor [1] implements abase plus o�set form of register addressing7 that couldbe used to support multiple variable-size contexts. AnADD operation for register addressing is more generalthan our proposed OR operation for register relocation,7The Denelcor HEP provided a similar capability.



and eliminates the power-of-two constraint on contextsizes. However, an ADD is much more expensive thanan OR in terms of hardware and time on the criticalpath. Moreover, the software for managing arbitrary-size contexts is likely to be more complex.A completely di�erent approach is the Named StateProcessor [16], which replaces a conventional register�le with a context cache. The context cache bindsvariable names to individual registers in a fully asso-ciative register �le, and spills registers only when theyare immediately needed for another purpose. Our reg-ister relocation mechanism supports a binding of vari-able names to contexts that is �ner than conventionalmultithreaded processors, but coarser than the con-text cache approach.5 Extensions and Future WorkWe are currently exploring a variety of issues re-lated to register relocation and multithreading.5.1 Software-Only ApproachWe have devised a related approach for multi-threading that requires no hardware support, and canbe used with many existing processors. The basic ideais to have the compiler generate multiple versions ofcode that use disjoint subsets of the register �le. Thus,register relocation is e�ectively performed at compile-time. This scheme has the obvious disadvantage ofcode expansion. However, the restrictions on contextsizes no longer apply, and any partitioning of the reg-ister �le is possible.We performed some simple experiments by modi-fying gcc, the GNU C compiler, to investigate thisscheme on a uniprocessor using the MIPS R3000 ar-chitecture. Our preliminary results were encouraging,but because of the limited number of general regis-ters on the MIPS architecture, the technique was notpractical for more than two contexts.85.2 Cache Interference E�ectsThreads sharing a common cache can interfere witheach other. Several studies have indicated that mostcache interference is destructive, increasing the cachemiss ratio [19, 25]. However, Agarwal has observedthat the working set size of �ne-grained threads tends8The MIPS architecture has only 32 integer registers, andseveral are reserved for the operating system and standard call-ing conventions [13].

to decrease with increasing parallelism, reducing cacheinterference [3].There is a tradeo� between improving processorutilization and exacerbating cache interference as thenumber of contexts is increased. Limiting the numberof contexts to improve cache performance is analogousto the problem of controlling the degree of multipro-gramming to improve virtual memory performance.Starting with some of the literature on multiprogram-ming, thrashing, and working sets [8], we are currentlyinvestigatingmethods for adaptively limiting the num-ber of resident contexts at runtime.5.3 Multiple Active ContextsWe are also examining extensions to the basic reg-ister relocation hardware primitive. One powerful ex-tension is to providemultiple register relocation masksthat can be selected during instruction execution. Aswith the basic mechanism, this extension should onlyimpact the instruction decode stage of the processorpipeline.For example, the high-order bit of each registeroperand in a machine instruction could be used toselect among two di�erent RRMs. This would permitinstructions to perform inter-context operations suchas ADD C0.R3, C0.R4, C1.R6. The resulting instruc-tion set would make an interesting compilation targetfor a concurrent intermediate language such as TAM[7], which attempts to minimize context switches byscheduling threads to share activation frames. Thismechanism is also su�ciently powerful to emulate�xed-size, overlapping register windows.Since an RRM requires only dlg ne bits for an archi-tecture with n general registers, allowingmultiple RRMswould require little additional hardware; the LDRRMinstruction could simultaneously load several masksfrom a single general register. The most costly aspectof allowingmultiple relocation masks is likely to be theneed for multiplexers to permit each register operandto select the desired RRM for relocation.6 ConclusionsWe have presented a new mechanism that e�-ciently supports multiple variable-size processor con-texts with minimal hardware support. Simple registerrelocation hardware, combined with appropriate soft-ware support, provides signi�cant 
exibility in the useof the register �le to support multithreading. This
exibility enables better utilization of scarce registerresources, allowing more contexts to remain resident
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A Context Allocation Code/** AllocMap is an allocation bitmap, represented by* a 32-bit integer. Each bit represents a `chunk' of* 4 contiguous registers in a register �le with 128* general registers. A set bit (1) denotes an unused* chunk; an unset bit (0) denotes a used chunk.**/int AllocMap;void ContextDealloc(Thread *t)f /* Update bitmap to reclaim thread context. */AllocMap |= t->allocMask;gint ContextAlloc64(Thread *t)f /** Attempt to allocate a context for thread t* with 64 registers (16 `chunks'). Uses linear* search. Returns SUCCESS or FAILURE.**/int tempMap;/* check low-order halfword */tempMap = AllocMap & 0xffff;if (tempMap == 0xffff)f /* success: update bitmap, thread state */AllocMap &= ~tempMap;t->rrm = 0;t->allocMask = 0xffff;return(SUCCESS);g/* check high-order halfword */tempMap = AllocMap >> 16;if (tempMap == 0xffff)f /* success: update bitmap, thread state */AllocMap &= 0xffff;t->rrm = (16 << 2);t->allocMask = (0xffff << 16);return(SUCCESS);g/* fail: unable to alloc context */return(FAILURE);g

int ContextAlloc16(Thread *t)f /** Attempt to allocate a context for thread t* with 16 registers (4 `chunks'). Uses binary* search. Returns SUCCESS or FAILURE.**/int rrm, tempMap;/** Construct bitmap for blocks of chunks.* Use bit-parallel pre�x scan. Combine to form* map of size-2 blocks, then map of size-4 blocks.* Then mask out irrelevant unaligned bits.**/tempMap = AllocMap & (AllocMap >> 1);tempMap &= tempMap >> 2;tempMap &= 0x11111111;/* fail quickly if unable to alloc context */if (tempMap == 0)return(FAILURE);/** Search bitmap for free block of chunks, setting* the rrm. Use binary search. First choose a 16-bit* block with an unused chunk, then an 8-bit block,* and �nally a 4-bit block. A `�nd �rst bit'* instruction could eliminate most of this code.**/rrm = 0;if ((tempMap & 0xffff) == 0)f rrm |= 16; tempMap >>= 16; gif ((tempMap & 0x00ff) == 0)f rrm |= 8; tempMap >>= 8; gif ((tempMap & 0x000f) == 0)f rrm |= 4; g/* success: update bitmap, thread state */tempMap = 0x000f << rrm;AllocMap &= ~tempMap;t->rrm = (rrm << 2);t->allocMask = tempMap;return(SUCCESS);g


