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Abstract

Multithreading 1s an important technique that im-
proves processor utilization by allowing computation
to be overlapped with the long latency operations that
commonly occur in multiprocessor systems. This pa-
per presents register relocation, a new mechanism that
efficiently supports flexible partitioning of the register
file into variable-size contexts with minimal hardware
support. Since the number of registers required by
thread contexts varies, this flexibility permits a better
utilization of scarce registers, allowing more contexts
to be resident, which in turn allows applications to
tolerate shorter run lengths and longer latencies. Our
experiments show that compared to fixed-size hard-
ware contexts, register relocation can improve proces-
sor utilization by a factor of two for many workloads.

1 Introduction

Multithreading 1s an important technique for tol-
erating latency in multiprocessor systems [3, 7, 19,
21]. Support for multiple contexts and rapid context
switching permits high latency operations such as re-
mote memory references and synchronization events
to be overlapped with computation, which improves
processor utilization. Because the number of regis-
ters required by thread contexts varies across appli-
cations and among threads within a single applica-
tion, the ability to partition the register file into con-
texts of varying sizes enables more efficient use of the
available registers. We present register relocation, a
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simple mechanism that efficiently supports flexible,
variable-size processor contexts with minimal hard-
ware support. The register relocation hardware should
affect only the instruction decode stage of the proces-
sor pipeline, and would be a simple addition to many
existing architectures.

Existing multithreaded architectures typically pro-
vide several separate, fixed-size contexts managed in
hardware. This fixed, inflexible division of the regis-
ter file often results in a significant waste of scarce
high-speed registers. More efficient partitioning of
the register file would permit a larger number of res-
ident contexts. Since the optimal number of contexts
is both application- and machine-dependent [19], en-
abling more resident contexts will allow programs with
sufficient parallelism to tolerate longer latencies and
shorter run lengths. Alternatively, better utilization
of the register file would permit a smaller register file
to support a given number of contexts, which has ar-
chitectural advantages in terms of chip area and pro-
cessor cycle-time [11].

Register relocation adheres to the RISC philoso-
phy [17] by maintaining a simple processor architec-
ture and relying upon the compiler and runtime sys-
tem to manage the allocation and use of contexts. We
discuss several runtime-level software techniques that
exploit the register relocation hardware, managing the
division of the register file into contexts in software.
Because the size of contexts is not dictated by the
hardware, there i1s considerable flexibility in the use of
the register file to support multithreading. Possible
organizations range from static partitioning into con-
texts with fixed or varying sizes to dynamic allocation
of contexts with varying sizes as needed. The flexi-
bility to provide a better match between application
requirements and the organization of the register file
into contexts enables better utilization of scarce reg-
isters, which allows more resident contexts and higher
processor utilization. OQur experiments show that reg-
ister relocation can improve performance by a factor
of two or more for many workloads.



Improvements in processor utilization can be ex-
pected whenever more contexts are able to remain
loaded through an efficient partitioning of the register
file. This 1s likely to be a common case, since many
threads cannot make effective use of a large number of
registers. Moreover, most programs exhibit decreasing
marginal performance improvements as the number of
available registers is increased. For example, one per-
formance study [9] revealed a pattern of decreasing
marginal savings in memory references as the number
of available registers is increased. Another [5] found
that even in workloads containing programs with large
basic blocks, the degradation in execution time given
16 registers instead of 32 averaged only 12%; the im-
provement given more than 32 registers averaged only
1%. This study also showed that sophisticated code
generation strategies require fewer registers. We be-
lieve that these effects are likely to be even more pro-
nounced in systems with many fine-grained threads
and sophisticated optimizing compilers.

In the next section, we discuss the hardware and
software support required for register relocation. Sec-
tion 3 discusses the results of several quantitative ex-
periments comparing register relocation to conven-
tional multithreaded architectures. In Section 4, we
examine related work. Extensions and directions for
future research are discussed in Section 5. Finally, we
summarize our conclusions in Section 6.

2 Register Relocation

The register relocation mechanism is very simple.
Instruction operands specify context-relative register
numbers, which are numbered consecutively starting
with register 0. These context-relative register num-
bers are dynamically combined with a special register
relocation mask (RRM) to form absolute register num-
bers that are used during instruction execution. A
bitwise OR is used as the combining operation.

The OR operation permits a flexible division be-
tween the number of RRM bits treated as the register
relocation base, and the number of register operand
bits treated as the register relocation offset, as shown
in Figure 1. This simple mechanism allows the register
file to be partitioned into a collection of variable-size
contexts. For example, the register file can be divided
into a small number of large contexts, as is convention-
ally done in hardware. Alternatively, the register file
can be divided into a large number of small contexts,
providing support for many fine-grained threads. The
register file can also be divided, statically or dynami-
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Figure 1: Register Relocation Examples. In both ex-
amples, there are a total of 128 general registers, the
RRM is 7 bits wide, and register operands are 5 bits
wide. The shaded portions of registers are effectively
unused. (a) The RRM provides relocation for a con-
text of size 8. Context-relative register 5 is relocated
to absolute register 45. (b) The RRM provides reloca-
tion for a context of size 16. Context-relative register
14 is relocated to absolute register 46.

cally, into different combinations of context sizes, sup-
porting a mix of both coarse and fine-grained threads.

2.1 Hardware Support

A register relocation mask (RRM) is maintained in
a special hardware register. The RRM register requires
[lgn] bits for a processor architecture with n general
registers. A special LDRRM R instruction 1s used to set
the RRM from the low-order [lg n] bits of register R. De-
pending on the organization of the processor pipeline,
there may be one or more delay slots following a LDRRM
instruction.

RISC architectures typically employ a fixed-field
decoding scheme in which register operands are always
specified at the same location within an instruction
[18]. During every instruction decode, a bitwise OR
operation is performed with each of the instruction’s
register operand fields and the RRY, yielding relocated
register operand fields, as shown in Figure 2. After the
instruction decode phase, no additional work needs to
be performed.

Another hardware change that would be necessary
in some architectures 1s to widen the internal paths
that carry the register operands specified by an in-
struction. This is because a relocated register operand
requires [lgn] bits to address the entire register file,
while a register operand field in an instruction may
only be able to address a smaller portion of the regis-
ter file, due to limitations on the width of a machine
instruction. We will denote the width of an instruction
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Figure 2: Register Relocation Hardware. During in-
struction decode, a bitwise OR is performed with each
of the instruction’s operands and the RRHM, yielding re-
located register operands.

register operand by w, which constrains the number
of addressable registers and places an upper bound of
2% on the size of a single context.

2.2 Context Scheduling

Unlike multithreaded architectures with hardware
control over scheduling [2, 10, 12, 22], we schedule con-
texts entirely in software. We have developed an ap-
proach for very fast context switching that does not re-
quire hardware support or the use of a separate sched-
uler context. Sample assembly-language code for this
fast context switch is listed in Figure 3. The scheduler
“ready queue” for loaded contexts is implemented as
a circular linked list of register relocation masks. This
list is maintained by storing a NextRRM mask in each
resident context. A transfer of control to the next
runnable thread context 1s implemented as follows:

e Store the current program counter in a register
associated with the current context. In the listed
code, context-relative register RO is used to store
the PC.

e Execute a LDRRM instruction to install the regis-
ter relocation mask for the next thread context.
Depending on the organization of the processor
pipeline, there may be one or more delay slots
following this instruction. In the listed code, R2
is used to store the NextRRM relocation mask, and
there is one delay slot.

e If necessary, save any processor state that must
be restored when the current thread is resumed.
When the newly installed RRM becomes active, re-
store any processor state associated with the new

Context-Relative Register Conventions

R1: processor status word (PSW)

/

/

/ RO: thread program counter (PC)

/

/ R2: mask for next thread (NextRRM)

fault: /| jump and link; save next PC in r0
jalr yield, rO
yield: | install new relocation mask,

| save old status register
| (single ldrrm delay slot)
ldrrm 12

mov PSW, r1

| restore new status register,
| execute code in new context
mov ri, PSW

jmp r0

Figure 3: Context Switch Code. The instruction la-
belled fault may be explicit (as shown), or the re-
sult of a trap. The register move (mov), unconditional
jump (jmp), and jump and link (jalr) instructions are
similar to those found in many RISC architectures.
The LDRRM instruction is described in Section 2.1.

context.! In the listed code, a processor status
word (PSW) is stored in R1.

e Jump to the program counter associated with the
new context.

This approach requires approximately 4 to 6 RISC
cycles, depending on the number of LDRRM delay slots
and the need to save and restore processor status in-
formation. More sophisticated scheduling policies can
also be implemented by altering the order in which
contexts are linked together by their NextRRM masks.
For example, separate linked lists of register reloca-
tion masks could be maintained to implement different
thread classes or priorities. Such flexibility is possible
because context scheduling is under software control.

10n some architectures, condition codes such as carry flags
must be preserved. This is unnecessary on architectures which
don’t use condition codes, such as the MIPS R3000. At the
other extreme, architectures such as the SPARC may require
expensive traps to manipulate this state.



2.3 Context Allocation

The register relocation mechanism can allocate a
context with size 2% registers, for 0 < k < w; the
maximum context size is limited to 2% by the number
of address bits used for register operands. However,
the minimum context size should be large enough to
maintain some state other than a program counter.
For example, practical context sizes for an architecture
with 256 registers and 6-bit register operands would
be 4, 8, 16, 32, and 64 registers.

Context allocation is performed entirely in soft-
ware, and is thus extremely flexible. One option is
to partition the register file statically into contexts
(with identical or differing sizes) for a particular ap-
plication, which makes allocation and deallocation ex-
tremely inexpensive. Another option is to partition
the register file dynamically into contexts of varying
sizes as needed.

For the experiments discussed in Section 3, we
coded general-purpose dynamic context allocation and
deallocation routines for a RISC architecture with 128
registers. The implementation employs simple shift
and mask operations to search an allocation bitmap
for available contexts. Linear search is used for some
context sizes, and binary search is used for others.
General-purpose allocation executes in approximately
25 RISC cycles, and general-purpose deallocation re-
quires fewer than 5 RISC cycles.? Sample C code for
general-purpose allocation is listed in Appendix A.

2.4 Compiler Support

Compilers can generate code as usual, and may as-
sume that the available registers are numbered from 0
to 2% —1. Although the compiler is permitted to use all
2% registers, many threads will require fewer registers.
For each thread, the compiler must inform the runtime
system about the number of registers that the thread
requires, which can be determined by traversing the
thread call graph. In systems that support separate
compilation, the compiler will need to provide this
information to the linker. However, this should not
present any difficult challenges; more sophisticated co-
operation between compilers and linkers has already
been demonstrated for register allocation [23].

The register relocation mechanism also presents
some interesting opportunities for compiler optimiza-
tions. As noted in Section 1, most programs real-

2If an operation such as the Motorola MC88000’s FF1 instruc-
tion is available that can find the first bit set in a word, then
general-purpose allocation can be performed in approximately

15 RISC cycles.

ize decreasing marginal improvements from additional
registers. A compiler can thus make tradeoffs be-
tween allocating additional registers to a thread or
using fewer registers to enable more resident contexts.
For example, a compiler may normally achieve some
marginal benefit by allocating 17 (versus 16) registers
to a thread; there is no reason to conserve registers if
they would otherwise be wasted. However, due to the
power-of-two constraint on context sizes, a thread that
uses 17 registers will require a context of size 32. The
15 extra registers that are consumed could instead be
used to support a higher degree of multithreading, and
the corresponding increase in processor utilization is
likely to exceed the original gain from using an extra
register.

Finally, by guaranteeing not to use any additional
registers, the compiler — not the hardware — is respon-
sible for ensuring protection among thread contexts.
However, similar protection issues arise for memory lo-
cations due to the execution of multiple threads within
a single address space. Note that we are assuming that
threads are associated with a single application, and
hence are logically related. Thus, erroneous register
overwrites are not inherently more problematic than
memory overwrites; they simply occur at different lev-
els in the memory hierarchy. In order to facilitate
low-level debugging of compilers and runtime system
routines, a separate tool could be used to statically
check executables or object files for most violations of
context boundaries.>

2.5 Context Loading

The register relocation mechanism requires the
compiler to determine the number of registers needed
by each thread, as described in Section 2.4. This in-
formation can also be exploited to save or restore the
exact number of registers used by a thread when its
context is loaded or unloaded. The runtime system
can provide one context unload routine that succes-
sively stores registers numbered 2% —1 to 0 to memory,
with 2% separate entry points corresponding to every
possible number of context registers used by threads.
Similarly, a single context load routine with multiple
entry points can be provided to successively load reg-
isters from memory.

30One of the referees suggested the use of MUXs to select
each bit from either the RRM or the register operand; this might
be faster in CMOS than an 0R, and would also prevent a thread
from accessing registers outside its allocated context. Alter-
natively, hardware could be added for “bounds checking” on
contexts.



Parameter | Description (units)
R average run length (cycles)
L average fault latency  (cycles)
S context switch cost (cycles)
F register file size (registers)
C required context size  (registers)
Cost (cycles)
Operation Flexible | Fixed
context allocate (succeed) 25 0
context allocate (fail) 15 0
context deallocate 5 0
context load/unload C C
thread queue insert/remove 10 10

Figure 4: Parameters and Assumptions. The first ta-
ble describes the experimental parameters. The sec-
ond table lists the cost assumptions used for both the
register relocation (Flexible) and conventional fixed-
size contexts (Fixed) architectures.

3 Experiments

We ran a large number of experiments, over a wide
range of system parameters, to evaluate the register
relocation mechanism. The experiments focus on a
single multiprocessor node executing multiple threads
with stochastic run lengths and varying fault latencies.
We assume a coarsely multithreaded processor archi-
tecture similar to APRIL [2], which switches contexts
only when a high-latency operation such as a remote
cache miss or synchronization fault occurs. We con-
ducted our experiments using PROTEUs [6], a high-
performance parallel architecture simulator, which we
modified to support multiple contexts.

Below we discuss several experiments involving only
cache faults, and others involving only synchronization
faults. We also ran experiments involving both types
of faults, with similar results; the main effect was to
increase the overall fault rate. The data presented
in this paper is representative of our experimental re-
sults; additional experiments appear in [24].

3.1 Parameters and Assumptions

In each experiment, a supply of synthetic threads
was created with particular fault rates and fault ser-
vice latencies. All threads executed until completion,
and statistics were extracted over a substantial frac-
tion of the execution that avoided transient startup

and completion effects.* Our experimental parame-
ters are summarized in Figure 4.

For each set of parameters, we performed two ex-
periments: one to simulate a conventional multi-
threaded processor architecture with fixed hardware
contexts, each containing 32 registers, and another to
simulate an architecture using the register relocation
mechanism. In both experiments, local thread queue
insertion and removal operations cost 10 cycles, and
loading contexts from memory and unloading contexts
to memory cost 1 cycle per register. An additional
charge of 10 cycles was assessed for the software over-
head of blocking and unblocking contexts when load-
ing and unloading.

For register relocation, successful context allocation
and deallocation cost 25 and b cycles, respectively, and
unsuccessful context allocation was charged 15 cycles.
These costs are consistent with the general-purpose
dynamic allocation routines listed in Appendix A. For
the conventional hardware architecture with fixed con-
texts, these costs were all set to 0, assuming some
hardware support for context scheduling. This as-
sumption was deliberately conservative for comparison
with the register relocation approach.

3.2 Tolerating Cache Faults

The experiments described in this section explore
the use of multithreading to hide the latency asso-
ciated with remote memory references. In each ex-
periment, the average run length between cache faults
(R) is geometrically distributed, and the average cache
fault latency (L) is constant. Thus, there is a fixed
probability of a cache miss on each execution cycle,
and network response time is uniform, which is reason-
able for lightly loaded networks. These distributions
are also consistent with the assumptions and models
used in earlier studies [3, 19]. The context switch cost
is set to S = 6 cycles, which is consistent with the
code presented in Figure 3, and better than the 11
cycle cost incurred by the current APRIL implemen-
tation [2]. To avoid effects due to the selection of a
particular thread unloading policy, contexts are never
unloaded.

Figure 5 summarizes many experiments; each data
point represents a separate simulation. The graphs
plot efficiency (i.e., processor utilization) vs. memory
latency for a family of curves corresponding to various
run lengths. The solid curves denote results for fixed-
size hardware contexts, and the dotted curves denote

4We also collected statistics from entire runs; these differed
only slightly from the statistics that excluded transients.



results for register relocation. For these experiments,
the number of registers required by each context ()
is uniformly distributed between 6 and 24 registers.
Due to the power-of-two constraint on context sizes
for register relocation, these experiments are biased
toward large contexts. Despite this bias, register re-
location consistently outperforms conventional fixed-
size contexts, resulting in significantly higher efficien-
cies over a wide range of values for L and R. Thus,
even for workloads consisting of many large contexts
and few small contexts, more contexts remain resident,
improving processor utilization.

3.3 Tolerating Synchronization Faults

This section describes experiments that examine
the use of multithreading to hide the latency asso-
ciated with synchronization events. In each exper-
iment, the average run length between synchroniza-
tion faults (R) is geometrically distributed, and the
average synchronization fault latency (L) is exponen-
tially distributed. Thus, there is a fixed probability of
a synchronization fault on each execution cycle, and
wait times for synchronization are exponentially dis-
tributed, which 1s reasonable for producer-consumer
synchronization [14]. The context switch cost is set to
S = 8 cycles, which is 2 cycles more than the cost used
in Section 3.2. This allows for simple bookkeeping and
test operations (e.g., an add and conditional branch)
which can be used to implement a thread unloading
policy. The thread unloading policy used in these ex-
periments is a competitive, two-phase algorithm [14].
A context is unloaded when the cost of repeated, un-
successful attempts to continue execution equals the
cost of unloading and blocking the context. Note that
the cost assessed for loading and unloading a context
is based on C', the number of registers required by
the context (see Section 2.5), not on the size of the
allocated context; this is true for all our simulations.
Since conventional architectures with fixed-size con-
texts typically save and restore all registers allocated
to a context, including unused ones, our experiments
conservatively overestimate the performance of con-
ventional approaches using hardware contexts.

Figure 6 summarizes the results for synchronization
faults; each data point represents a separate simula-
tion. The graphs plot efficiency vs. synchronization
latency for a family of curves corresponding to vari-
ous run lengths. The solid curves denote results for
fixed-size hardware contexts, and the dotted curves
denote results using register relocation. For these ex-
periments, the number of registers required by each
context (C') is uniformly distributed between 6 and
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Figure 5: Cache Faults. Efficiency for F' = 64, 128,
and 256 registers, and C' uniformly distributed from
6 to 24 registers. Curves: solid — fixed-size contexts,
dotted — register relocation. Data points: circles —
R = 8, squares — R = 32, triangles — R = 128.
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Figure 6: Synchronization Faults. Efficiency for F' =
64, 128, and 256 registers, and C' uniformly distributed
from 6 to 24 registers. Curves: solid — fixed-size con-
texts, dotted —register relocation. Data points: circles
— R =32, squares — R = 128, triangles - R = 512.

24 registers. As explained earlier, this distribution is
biased toward large contexts.

Register relocation improves processor utilization
for virtually all parameter values. The only notable
exception is provided by Figure 6(a), in which rela-
tively large contexts are competing for a small reg-
ister file (F = 64). As L increases, the advantages
provided by register relocation diminish, and fixed-
size hardware contexts marginally outperform register
relocation for large L. This is due to the software over-
head associated with context allocation in the register
relocation approach. When the register file is small
and contexts are large, contexts are continually loaded
and unloaded for small R and large L, resulting in a
large number of allocation operations. Re-executing
the experiments in Figure 6(a) with lower allocation
costs confirmed this explanation; in this case regis-
ter relocation consistently outperformed the fixed-size
contexts. Recall that allocation costs were set to 0 for
the fixed-size hardware contexts in order to conser-
vatively overestimate the performance of conventional
approaches. If workload parameters similar to those
in Figure 6(a) were common, a different, specialized
allocation policy could be adopted. For example, two
sets of context sizes could be implemented extremely
cheaply; an allocation bitmap for contexts of size 16
and 32 can be encoded in four bits, and a direct lookup
table indexed by this bitmap could be used to allocate
contexts. The flexibility of performing allocation in
software makes such schemes possible.

Nevertheless, even with a general-purpose dynamic
allocation policy, register relocation still results in sub-
stantial efficiency gains over a wide range of values for
L and R. Thus, for most workloads, we expect register
relocation to enable more resident contexts, making it
possible to improve processor utilization by tolerating
long synchronization latencies.

3.4 Discussion

We also performed numerous experiments similar
to those presented above, using homogeneous context
sizes C' = 8 and C' = 16. The results were similar
to those presented in Figures 5 and 6, but the rela-
tive improvements due to register relocation were of-
ten substantially larger [24]. This is not surprising,
since the primary effect of smaller context sizes is to
increase the number of contexts that can be supported
by a given register file.

Register relocation significantly outperforms fixed-
size hardware contexts over a wide range of system
parameters, sometimes by huge margins. By provid-
ing the flexibility to efficiently partition the register



file, scarce register resources are better utilized, al-
lowing more contexts to remain resident. The number
of resident contexts has a dramatic impact on proces-
sor utilization. As run lengths decrease and latencies
increase, more contexts are needed to prevent the pro-
cessor from 1dling. This trend 1s clearly indicated by
the data presented in Figures 5 through 6, and can
also be explained analytically.

A simple mathematical analysis of multithreaded
architectures [19] reveals that for constant run lengths
and latencies, processor efficiency can be determined
from the parameters R, L, and S.° When there is al-
ways a resident context that is ready to execute, the
processor is saturated, and its efficiency is indepen-
dent of L: Eqr = %. When the number of resident
contexts is below the saturation point, the processor
will not be fully utilized, and its efficiency is linear in
the number of resident contexts (N): &y = %.

Thus, processor efficiency increases linearly in the
number of resident contexts until saturation, after
which it remains constant. From these two equations,
we find that for N < 1+ RLT’ processor efficiency
is in the linear region. Given current trends toward
large parallel machines and extremely fast processors,
we expect R to decrease and L to increase, requir-
ing a large number of contexts before processor effi-
ciency saturates. Thus, systems with a small number
of hardware contexts are likely to operate in the lin-
ear regime, where register relocation can substantially
improve performance.

Some earlier studies have suggested that only a
small number of contexts (2 to 4) is required to achieve
high processor utilization [2, 25]. Although it is true
that a small number of contexts significantly boosts ef-
ficiency for relatively low L and sufficiently high R, the
optimal number of contexts is both application- and
machine-dependent [19]. For example, the Horizon ar-
chitecture [22] provides 128 hardware contexts in order
to tolerate long latencies and short run lengths. More-
over, even proponents of a small number of hardware
contexts agree that a large supply of runnable, loaded
contexts 1s needed to tolerate synchronization laten-
cies, which are typically much longer than latencies for
remote memory access. For example, additional hard-
ware for dribbling registers is currently being explored
by the APRIL designers for tolerating longer latencies
[20].° Our register relocation mechanism provides a

5A considerably more complex analysis is also presented in
[19] that accounts for stochastic run lengths. However, the sim-
pler equations for the deterministic case still provide a reason-
able approximation for processor efficiency.

6 The dribbling registers idea is completely orthogonal to the
register relocation mechanism.

simple, effective alternative to increasingly complex
and specialized hardware solutions.

4 Related Work

Most multithreaded processor architectures employ
hardware-intensive and inflexible mechanisms for mul-
tithreading. Our approach is software-intensive, and
attempts to minimize the hardware required to sup-
port multithreading efficiently and flexibly. In this
section we compare register relocation in more detail
to other approaches.

A number of processor architectures with multiple
hardware contexts have been proposed. Finely multi-
threaded processors, such as the Denelcor HEP [21],
execute an instruction from a different thread on each
cycle. A drawback to this approach is that the inter-
leaving of threads in the processor pipeline degrades
single-thread performance. Also, these processors re-
quire a steady supply of runnable threads that can
be interleaved cycle-by-cycle to keep the processor
pipeline busy. The more recent MASA architecture
[10] also suffers from this problem. The Horizon and
Tera architectures [4, 22] also switch among instruc-
tion streams on every cycle, but allow several instruc-
tions from the same thread to co-exist in the pipeline.

Coarsely multithreaded processors, such as APRIL
[2], execute larger blocks of instructions from each
thread, and typically switch contexts only when a
high-latency operation occurs. A drawback to this
approach is that a context switch typically bubbles
the processor pipeline, degrading multithreaded per-
formance. Hybrid dataflow / von-Neumann architec-
tures [12, 15] also have pipelines that only contain in-
structions from a single thread, and typically provide
support for hardware task queues.

Most of the architectures described above maintain
a fixed, inflexible division of high-speed register re-
sources into multiple contexts. Our register reloca-
tion mechanism supports coarse multithreading, but
permits unusual flexibility in the organization of the
register file by managing contexts in software. Con-
text scheduling is also performed entirely in software,
vet only a few RISC cycles are required to implement
a context switch.

The AMD Am29000 processor [1] implements a
base plus offset form of register addressing” that could
be used to support multiple variable-size contexts. An
ADD operation for register addressing is more general
than our proposed OR operation for register relocation,

"The Denelcor HEP provided a similar capability.



and eliminates the power-of-two constraint on context
sizes. However, an ADD is much more expensive than
an OR in terms of hardware and time on the critical
path. Moreover, the software for managing arbitrary-
size contexts is likely to be more complex.

A completely different approach is the Named State
Processor [16], which replaces a conventional register
file with a context cache. The context cache binds
variable names to individual registers in a fully asso-
ciative register file, and spills registers only when they
are immediately needed for another purpose. Our reg-
ister relocation mechanism supports a binding of vari-
able names to contexts that is finer than conventional
multithreaded processors, but coarser than the con-
text cache approach.

5 Extensions and Future Work

We are currently exploring a variety of issues re-
lated to register relocation and multithreading.

5.1 Software-Only Approach

We have devised a related approach for multi-
threading that requires no hardware support, and can
be used with many existing processors. The basic idea
is to have the compiler generate multiple versions of
code that use disjoint subsets of the register file. Thus,
register relocation is effectively performed at compile-
time. This scheme has the obvious disadvantage of
code expansion. However, the restrictions on context
sizes no longer apply, and any partitioning of the reg-
ister file is possible.

We performed some simple experiments by modi-
fying gcc, the GNU C compiler, to investigate this
scheme on a uniprocessor using the MIPS R3000 ar-
chitecture. Our preliminary results were encouraging,
but because of the limited number of general regis-
ters on the MIPS architecture, the technique was not
practical for more than two contexts.®

5.2 Cache Interference Effects

Threads sharing a common cache can interfere with
each other. Several studies have indicated that most
cache interference 1s destructive, increasing the cache
miss ratio [19, 25]. However, Agarwal has observed
that the working set size of fine-grained threads tends

8The MIPS architecture has only 32 integer registers, and
several are reserved for the operating system and standard call-
ing conventions [13].

to decrease with increasing parallelism, reducing cache
interference [3].

There is a tradeoff between improving processor
utilization and exacerbating cache interference as the
number of contexts is increased. Limiting the number
of contexts to improve cache performance is analogous
to the problem of controlling the degree of multipro-
gramming to improve virtual memory performance.
Starting with some of the literature on multiprogram-
ming, thrashing, and working sets [8], we are currently
investigating methods for adaptively limiting the num-
ber of resident contexts at runtime.

5.3 Multiple Active Contexts

We are also examining extensions to the basic reg-
ister relocation hardware primitive. One powerful ex-
tension is to provide multiple register relocation masks
that can be selected during instruction execution. As
with the basic mechanism, this extension should only
impact the instruction decode stage of the processor
pipeline.

For example, the high-order bit of each register
operand in a machine instruction could be used to
select among two different RRMs. This would permit
instructions to perform inter-context operations such
as ADD CO.R3, CO.R4, C1.R6. The resulting instruc-
tion set would make an interesting compilation target
for a concurrent intermediate language such as TAM
[7], which attempts to minimize context switches by
scheduling threads to share activation frames. This
mechanism is also sufficiently powerful to emulate
fixed-size, overlapping register windows.

Since an RRM requires only [lg n] bits for an archi-
tecture with n general registers, allowing multiple RRMs
would require little additional hardware; the LDRRM
instruction could simultaneously load several masks
from a single general register. The most costly aspect
of allowing multiple relocation masks is likely to be the
need for multiplexers to permit each register operand
to select the desired RRM for relocation.

6 Conclusions

We have presented a new mechanism that effi-
ciently supports multiple variable-size processor con-
texts with minimal hardware support. Simple register
relocation hardware, combined with appropriate soft-
ware support, provides significant flexibility in the use
of the register file to support multithreading. This
flexibility enables better utilization of scarce register
resources, allowing more contexts to remain resident



than 1s possible with conventional fixed-size hardware
contexts.

A larger number of resident contexts makes it fea-
sible to tolerate shorter run lengths and longer laten-
cles, improving processor utilization over a wide range
of system parameters. We have presented and ana-
lyzed a collection of experiments that demonstrates
that register relocation can achieve substantial per-
formance gains over fixed-size hardware contexts; a
factor of two improvement is possible for many work-
loads. We are currently exploring the effects of mul-
tithreading on cache interference, and are examining
extensions to the basic register relocation primitive.
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A  Context Allocation Code

/%

a 32-bit integer. Each bit represents a ‘chunk’ of
4 contiguous registers in a register file with 128
general registers. A set bit (1) denotes an unused
chunk; an unset bit (0) denotes a used chunk.

¥ X X X ¥ *

*/

int AllocMap;

void ContextDealloc(Thread *t)

{

1

/* Update bitmap to reclaim thread context. */
AllocMap |= t->allocMask;

int ContextAlloc64(Thread *t)

{

1

/%
* Attempt to allocate a context for thread t
* with 64 registers (16 ‘chunks’). Uses linear
* search. Returns SUCCESS or FAILURE.
*
*/

int tempMap;

/* check low-order halfword */
tempMap = AllocMap & Oxffff;
if (tempMap == Oxffff)
{
/* success: update bitmap, thread state */
AllocMap &= “tempMap;
t->rrm = O;
t->allocMask = Oxffff;
return(SUCCESS) ;

1

/* check high-order halfword */
tempMap = AllocMap >> 16;
if (tempMap == Oxffff)
{
/* success: update bitmap, thread state */
AllocMap &= Oxffff;
t->rrm = (16 << 2);
t->allocMask = (Oxffff << 16);
return(SUCCESS) ;

1

/* fail: unable to alloc context */
return(FAILURE);

AllocMap 1s an allocation bitmap, represented by

int ContextAllocl16(Thread *t)

/%

* %

*
*

Attempt to allocate a context for thread t
with 16 registers (4 ‘chunks’). Uses binary
search. Returns SUCCESS or FAILURE.

*/

int

/%

¥ ¥ X ¥ *

rrm, tempMap;

Construct bitmap for blocks of chunks.

Use bit-parallel prefix scan. Combine to form
map of size-2 blocks, then map of size-4 blocks.
Then mask out irrelevant unaligned bits.

*/

tem
tem
tem

/%
if
r

/%

*
*
*
*
*
*

pMap = AllocMap & (AllocMap >> 1);
plap &= templap >> 2;
pMap &= Ox11111111;

fail quickly if unable to alloc context */
(tempMap == 0)
eturn(FAILURE);

Search bitmap for free block of chunks, setting
the rrm. Use binary search. First choose a 16-bit
block with an unused chunk, then an 8-bit block,
and finally a 4-bit block. A ‘find first bit’

instruction could eliminate most of this code.

*/

rrm
if
{
if
{
if

{
/%

tempMap =

A1l
t->
t->

= 0;
((tempMap & Oxffff) == 0)
rrm |= 16; tempMap >>= 16; }
((tempMap & 0x00ff) == 0)
rrm |= 8; tempMap >>= 8; }
((tempMap & 0x000f) == 0)
rrm |= 4; }

success: update bitmap, thread state */
0x000f << rrm;

ocMap &= “tempMap;

(rrm << 2);

allocMask = tempMap;

Irrm =

return(SUCCESS) ;



