
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

Efficient MRC Construction with SHARDS
Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite,

and Irfan Ahmad, CloudPhysics, Inc.

https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 95

Efficient MRC Construction with SHARDS

Carl A. Waldspurger Nohhyun Park Alexander Garthwaite Irfan Ahmad
CloudPhysics, Inc.

Abstract
Reuse-distance analysis is a powerful technique for char-
acterizing temporal locality of workloads, often visual-
ized with miss ratio curves (MRCs). Unfortunately, even
the most efficient exact implementations are too heavy-
weight for practical online use in production systems.

We introduce a new approximation algorithm that
employs uniform randomized spatial sampling, imple-
mented by tracking references to representative loca-
tions selected dynamically based on their hash values.
A further refinement runs in constant space by lower-
ing the sampling rate adaptively. Our approach, called
SHARDS (Spatially Hashed Approximate Reuse Distance
Sampling), drastically reduces the space and time re-
quirements of reuse-distance analysis, making continu-
ous, online MRC generation practical to embed into pro-
duction firmware or system software. SHARDS also en-
ables the analysis of long traces that, due to memory con-
straints, were resistant to such analysis in the past.

We evaluate SHARDS using trace data collected from
a commercial I/O caching analytics service. MRCs gen-
erated for more than a hundred traces demonstrate high
accuracy with very low resource usage. MRCs con-
structed in a bounded 1 MB footprint, with effective sam-
pling rates significantly lower than 1%, exhibit approxi-
mate miss ratio errors averaging less than 0.01. For large
traces, this configuration reduces memory usage by a fac-
tor of up to 10,800 and run time by a factor of up to 204.

1 Introduction

Caches designed to accelerate data access by exploiting
locality are pervasive in modern storage systems. Oper-
ating systems and databases maintain in-memory buffer
caches containing “hot” blocks considered likely to be
reused. Server-side or networked storage caches using
flash memory are popular as a cost-effective way to re-
duce application latency and offload work from rotating
disks. Virtually all storage devices — ranging from indi-
vidual disk drives to large storage arrays — include sig-
nificant caches composed of RAM or flash memory.

Since cache space consists of relatively fast, expensive
storage, it is inherently a scarce resource, and is com-
monly shared among multiple clients. As a result, op-
timizing cache allocations is important, and approaches

for estimating workload performance as a function of
cache size are particularly valuable.

1.1 Cache Utility Curves
Cache utility curves are effective tools for managing
cache allocations. Such curves plot a performance metric
as a function of cache size. Figure 1 shows an example
miss-ratio curve (MRC), which plots the ratio of cache
misses to total references for a workload (y-axis) as a
function of cache size (x-axis). The higher the miss ra-
tio, the worse the performance; the miss ratio decreases
as cache size increases. MRCs come in many shapes
and sizes, and represent the historical cache behavior of
a particular workload.

Assuming some level of stationarity in the workload
pattern at the time scale of interest, its MRC can also be
used to predict its future cache performance. An admin-
istrator can use a system-wide miss ratio curve to help
determine the aggregate amount of cache space to pro-
vision for a desired improvement in overall system per-
formance. Similarly, an automated cache manager can
utilize separate MRCs for multiple workloads of varying
importance, optimizing cache allocations dynamically to
achieve service-level objectives.

1.2 Weaker Alternatives
The concept of a working set — the set of data accessed
during the most recent sample interval [16] — is often
used by online allocation algorithms in systems software
[12, 54, 61]. While working-set estimation provides
valuable information, it doesn’t measure data reuse, nor
does it predict changes in performance as cache alloca-
tions are varied. Without the type of information con-
veyed in a cache utility curve, administrators or auto-
mated systems seeking to optimize cache allocations are
forced to resort to simple heuristics, or to engage in trial-
and-error tests. Both approaches are problematic.

Heuristics simply don’t work well for cache sizing,
since they cannot capture the temporal locality profile of
a workload. Without knowledge of marginal benefits, for
example, doubling (or halving) the cache size for a given
workload may change its performance only slightly, or
by a dramatic amount.

Trial-and-error tests that vary the size of a cache and
measure the effect are not only time-consuming and ex-

96 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

0.0

0.2

0.4

0.6

0.8

 0 5 10 15 20

M
is

s
R

at
io

Cache Size (GB)
Figure 1: Example MRC. A miss ratio curve plots the ratio
of cache misses to total references, as a function of cache size.

pensive, but also present significant risk to production
systems. Correct sizing requires experimentation across
a range of cache allocations; some might induce thrash-
ing and cause a precipitous loss of performance. Long-
running experiments required to warm up caches or to
observe business cycles may exacerbate the negative ef-
fects. In practice, administrators rarely have time for this.

1.3 MRC Construction
Although cache utility curves are extremely useful for
planning and optimization, the algorithms used to con-
struct them are computationally expensive. To construct
an exact MRC, it is necessary to observe data reuse over
the access trace. Every accessed location must be tracked
and stored in data structures during trace processing, re-
sulting in large overheads in both time and space.

The technique due to Mattson et al. [34] scans the
trace of references to collect a histogram of reuse dis-
tances. The reuse distance for an access to a block B
is measured as the number of other intervening unique
blocks referenced since the previous access to B. The
number of times a particular reuse distance occurs is col-
lected while processing the trace, over all possible reuse
distances. Conceptually, for modeling LRU, accessed
blocks are totally ordered in a stack from most recent
to least recent access. On an access to block B, it:
• determines the reuse distance of B as:

D = stack depth of B (for first access to B, D = ∞),
• records D in a reuse-distance histogram, and
• moves B to the top of stack.

Standard implementations maintain a balanced tree to
track the most recent references to each block and com-
pute reuse distances efficiently, and employ a hash table
for fast lookups into this tree. For a trace of length N
containing M unique references, the most efficient im-
plementations of this algorithm have an asymptotic cost
of O(N logM) time and O(M) space.

Given the non-linear computation cost and unbounded
memory requirements, it is impractical to perform real-
time analysis in production systems. Even when pro-

cessing can be delayed and performed offline from a
trace file, memory requirements may still be excessive.1

This is especially important when modeling large stor-
age caches; in contrast to RAM-based caches, affordable
flash cache capacities often exceed 1 TB, requiring many
gigabytes of RAM for traditional MRC construction.

1.4 Our Contributions
We introduce a new approach for reuse-distance anal-
ysis that constructs accurate miss ratio curves using
only modest computational resources. We call our tech-
nique SHARDS, for Spatially Hashed Approximate Reuse
Distance Sampling. It employs randomized spatial sam-
pling, implemented by tracking only references to rep-
resentative locations, selected dynamically based on a
function of their hash values. We further introduce an
extended version of SHARDS which runs in constant
space, by lowering the sampling rate adaptively.

The SHARDS approximation requires several orders
of magnitude less space and time than exact methods,
and is inexpensive enough for practical online MRC con-
struction in high-performance systems. The dramatic
space reductions also enable analysis of long traces that
is not feasible with exact methods. Traces that consume
many gigabytes of RAM to construct exact MRCs re-
quire less than 1 MB for accurate approximations.

This low cost even enables concurrent evaluation of
different cache configurations (e.g., block size or write
policy) using multiple SHARDS instances. We also
present a related generalization to non-LRU policies.

We have implemented SHARDS in the context of a
commercial I/O caching analytics service for virtualized
environments. Our system streams compressed block I/O
traces for VMware virtual disks from customer data cen-
ters to a cloud-based backend that constructs approxi-
mate MRCs efficiently. A web-based interface reports
expected cache benefits, such as the cache size required
to reduce average I/O latency by specified amounts. Run-
ning this service, we have accumulated a large number of
production traces from customer environments.

For this paper, we analyzed both exact and approxi-
mate MRCs for more than a hundred virtual disks from
our trace library, plus additional publicly-available block
I/O traces. Averaged across all traces, the miss ratios
of the approximated MRCs, constructed using a 0.1%
sampling rate, deviate in absolute value from the exact
MRCs by an average of less than 0.02; i.e., the approxi-
mate sampled miss ratio is within 2 percentage points of
the value calculated exactly using the full trace.

Moreover, approximate MRCs constructed using a
fixed sample-set size, with only 8K samples in less than

1We have collected several single-VM I/O traces for which conven-
tional MRC construction does not fit in 64 GB RAM.

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 97

1 MB memory, deviate by an average of less than 0.01
from the exact full trace values. This high accuracy is
achieved despite dramatic memory savings by a factor of
up to 10,800× for large traces, and a median of 185×
across all traces. The computation cost is also reduced
up to 204× for large traces, with a median of 22×.

The next section presents the SHARDS algorithm,
along with an extended version that runs in constant
space. Details of our MRC construction implementation
are examined in Section 3. Section 4 evaluates SHARDS
through quantitative experiments on more than a hundred
real-world I/O traces. Related work is discussed in Sec-
tion 5. Finally, we summarize our conclusions and high-
light opportunities for future work in Section 6.

2 SHARDS Sampling Algorithm

Our core idea is centered around a simple question: what
if we compute reuse distances for a randomly sampled
subset of the referenced blocks? The answer leads to
SHARDS, a new algorithm based on spatially-hashed
sampling. Despite the focus on storage MRCs, this ap-
proach can be applied more generally to approximate
other cache utility curves, with any stream of references
containing virtual or physical location identifiers.

2.1 Basic SHARDS
SHARDS is conceptually simple — for each referenced
location L, the decision of whether or not to sample L is
based on whether hash(L) satisfies some condition. For
example, the condition hash(L) mod 100 < K samples
approximately K percent of the entire location space. As-
suming a reasonable hash function, this effectively im-
plements uniform random spatial sampling.

This method has several desirable properties. As re-
quired for reuse distance computations, it ensures that all
accesses to the same location will be sampled, since they
will have the same hash value. It does not require any
prior knowledge about the system, its workload, or the
location address space. In particular, no information is
needed about the set of locations that may be accessed
by the workload, nor the distribution of accesses to these
locations. As a result, SHARDS sampling is effectively
stateless. In contrast, explicitly pre-selecting a random
subset of locations may require significant storage, espe-
cially if the location address space is large. Often, only a
small fraction of this space is accessed by the workload,
making such pre-selection especially inefficient.

More generally, using the sampling condition
hash(L) mod P < T , with modulus P and threshold T ,
the effective sampling rate is R = T/P, and each sample
represents 1/R locations, in a statistical sense. The
sampling rate may be varied by changing the threshold

Hash table for fast lookup

Li

Sample set S

Reuse distance histogram

Tree for fast distance computation

Stream of references

Insert <Li, Ti> into set S.
If |S| > smax :
 Dequeue entries <Lj, Tmax>
 Lower global threshold T=Tmax

 Remove Lj from distance tree
 Remove Lj from hash table

Specific to SHARDS (both variants)

Boxes show new steps in SHARDS
compared to exact MRC construction

Specific to Fixed Size SHARDS

Spatial Sampling Filter:
Compute Ti = hash(Li)mod P.
Sample location only if Ti < T.

Insert into distance tree.

Update histogram with distance Di

Update
position in

distance
tree.

Rescale Di before updating:
Di=Di / R, where R=T/P.

Li = reference location
P = modulus
T

 = adaptive global threshold

Ti = threshold for Li= hash(Li)mod P
Tmax= largest T among samples in S

Priority queue for
fast dequeue

Not FoundFound

Key:

Figure 2: Algorithm Overview. New steps in SHARDS
compared to a standard exact MRC construction algorithm.

T dynamically. When the threshold is lowered from
T to T ′, a subset-inclusion property is maintained
automatically. Each location sampled after lowering the
rate would also have been sampled prior to lowering the
rate; since T ′ < T , the samples selected with T ′ are a
proper subset of those selected with T .

2.2 Fixed-Rate MRC Construction
Conventional reuse-distance algorithms construct an ex-
act MRC from a complete reference trace [34, 39]. Con-
veniently, as shown in Figure 2, existing MRC construc-
tion implementations can be run, essentially unmodified,
by providing them a sampled reference trace as input.
The only modification is that each reuse distance must be
scaled appropriately by 1/R, since each sampled location
statistically represents a larger number of locations.

98 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Standard MRC construction algorithms are computa-
tionally expensive. Consider a reference stream contain-
ing N total references to M unique locations. While
an optimized implementation using efficient data struc-
tures requires only O(N logM) time, it still consumes
O(M) space for the hash table and balanced tree used
to compute reuse distances. SHARDS can be used to
construct an approximate MRC in dramatically less time
and space. With a fixed sampling rate R, the expected
number of unique sampled locations becomes R ·M. As-
suming the sampled locations are fairly representative,
the total number of sampled references is reduced to ap-
proximately R ·N. As we will see in Section 4, for most
workloads, R = 0.001 yields very accurate MRCs, us-
ing memory and processing resources that are orders of
magnitude smaller than conventional approaches.

2.3 Fixed-Size MRC Construction
Fixed-rate MRC construction achieves a radical reduc-
tion in computational resource requirements. Neverthe-
less, even with a low, constant sampling rate, space re-
quirements may still grow without bound, along with the
total number of unique locations that must be tracked.
For memory-constrained environments, such as produc-
tion cache controller firmware where MRCs could in-
form cache allocation decisions, it is desirable to place
an upper bound on memory size.

An additional issue is the choice of an appropriate
sampling rate, R, since the accuracy of MRC approxi-
mation using spatial sampling also depends on N and M.
When these values are small, it is preferable to use a rela-
tively large value for R (such as 0.1) to improve accuracy.
When these values are large, it is preferable to use a rela-
tively small value of R (such as 0.001), to avoid wasting
or exhausting available resources. Weighing these trade-
offs is difficult, especially with incomplete information.

This suggests that accuracy may depend more on an
adequate sample size than a particular sampling rate.
This motivates an extended version of SHARDS that
constructs an MRC in O(1) space and O(N) time, re-
gardless of the size or other properties of its input trace.

2.3.1 Sampling Rate Adaptation
An appropriate sampling rate is determined automati-
cally, and need not be specified. The basic idea is to
lower the sampling rate adaptively, in order to maintain
a fixed bound on the total number of sampled locations
that are tracked at any given point in time. The sampling
rate is initialized to a high value, and is lowered grad-
ually as more unique locations are encountered. This
approach leverages the subset-inclusion property main-
tained by SHARDS as the rate is reduced.

Initially, the sampling rate is set to a high value, such
as R0 = 1.0, the maximum possible value. This is im-

plemented by using a sampling condition of the form
hash(L) mod P < T , and setting the initial threshold T =
P, so that every location L will be selected. In practice,
R0 = 0.1 is sufficiently high for nearly any workload.

The goal of operating in constant space implies that
we cannot continue to track all sampled references. As
shown in Figure 2, a new auxiliary data structure is in-
troduced to maintain a fixed-size set S with cardinality
|S|. Each element of S is a tuple 〈Li, Ti〉, consisting of an
actively-sampled location Li, and its associated threshold
value, Ti = hash(Li) mod P. Let smax denote the max-
imum desired size |S| of set S; i.e., smax is a constant
representing an upper bound on the number of actively-
sampled locations. S can be implemented efficiently as a
priority queue, ordered by the tuple’s threshold value.

When the first reference to a location L that satisfies
the current sampling condition is processed, it is a cold
miss, since it has never been resident in the cache. In this
case, L is not already in S, so it must be added to the set.
If, after adding L, the bound on the set of active locations
would be exceeded, such that |S| > smax, then the size
of S must be reduced. The element

〈
L j, Tmax

〉
with the

largest threshold value Tmax is removed from the set, us-
ing a priority-queue dequeue operation. The threshold T
used in the current sampling condition is reduced to Tmax,
effectively reducing the sampling rate from Rold = T/P
to a new, strictly lower rate Rnew = Tmax/P, narrowing
the criteria used for future sample selection.

The corresponding location L j is also removed from
all other data structures, such as the hash table and tree
used in standard implementations. If any additional el-
ements of S have the same threshold Tmax, then they are
also removed from S in the same manner.

2.3.2 Histogram Count Rescaling
As with fixed-rate sampling, reuse distances must be
scaled by 1/R to reflect the sampling rate. An additional
consideration for the fixed-size case is that R is adjusted
dynamically. As the rate is reduced, the counts associ-
ated with earlier updates to the reuse-distance histogram
need to be adjusted. Ideally, the effects of all updates
associated with an evicted sample should be rescaled ex-
actly. Since this would incur significant space and pro-
cessing costs, we opt for a simple approximation.

When the threshold is reduced, the count associated
with each histogram bucket is scaled by the ratio of the
new and old sampling rates, Rnew/Rold , which is equiva-
lent to the ratio of the new and old thresholds, Tnew/Told .
Rescaling makes the simplifying assumption that previ-
ous references to an evicted sample contributed equally
to all existing buckets. While this is unlikely to be true
for any individual sample, it is nonetheless a reasonable
statistical approximation when viewed over many sam-
ple evictions and rescaling operations. Rescaling ensures

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 99

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80
Cache Size (GB)

M
is

s
R

at
io

Sampling Rate (R)
Exact MRC
0.1
0.01
0.001
0.0001
0.00001

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80
Cache Size (GB)

M
is

s
R

at
io

Sample Size (smax)

Exact MRC
32K
8K
2K
512
128

(b)

Figure 3: Example SHARDS MRCs. MRCs constructed for a block I/O trace containing 69.5M references to 5.2M unique
blocks, using (a) fixed-rate SHARDS, varying R from 0.00001 to 0.1, and (b) fixed-size SHARDS, varying smax from 128 to 32K.

that subsequent references to the remaining samples in S
have the appropriate relative weight associated with their
corresponding histogram bucket increments.

Conceptually, rescaling occurs immediately each time
the current sampling threshold T is reduced. In practice,
to avoid the expense of rescaling all histogram counts
on every threshold change, it is instead performed in-
crementally. This is accomplished efficiently by storing
Tbucket with each histogram bucket, representing the sam-
pling threshold in effect when the bucket was last up-
dated. When incrementing a bucket count, if Tbucket �= T ,
then the existing count is first rescaled by T/Tbucket , the
count is incremented, and Tbucket is set to T . During the
final step in MRC construction, when histogram buck-
ets are summed to generate miss ratios, any buckets for
which Tbucket �= T need to be similarly rescaled.

3 Design and Implementation

We have developed several different implementations of
SHARDS. Although designed for flexible experimenta-
tion, efficiency — especially space efficiency — was al-
ways a key goal. This section describes important as-
pects of both our fixed-rate and fixed-size MRC con-
struction implementations, and discusses considerations
for modeling various cache policies.

3.1 Fixed-Rate Implementation
To facilitate comparison with a known baseline, we start
with the sequential version of the open-source C imple-
mentation of PARDA [39, 38]. PARDA takes a trace
file as input, and performs offline reuse distance analysis,
yielding an MRC. The implementation leverages two key
data structures: a hash table that maps a location to the

timestamp of its most recent reference, and a splay tree
[48, 47] that is used to compute the number of distinct
locations referenced since this timestamp.

Only a few simple modifications to the PARDA code
were required to implement fixed-rate SHARDS, involv-
ing less than 50 lines of code. First, each referenced
location read from the trace file is hashed, and pro-
cessed only if it meets the specified sampling condition
hash(L) mod P < T . For efficiency, the modulus P is
set to a power of two2 and “mod P” is replaced with
the less expensive bitwise mask operation “& (P− 1)”.
For a given sampling rate R, the threshold T is set to
round(R ·P). For the hash function, we used the public-
domain C implementation of MurmurHash3 [3]. We also
experimented with other hash functions, including a fast
pseudo-random number generator [13], and found that
they yielded nearly identical results.

Next, computed reuse distances are adjusted to re-
flect the sampling rate. Each raw distance D is simply
divided by R to yield the appropriately scaled distance
D/R. Since R = T/P, the scaled distance (D ·P)/T is
computed efficiently using an integer shift and division.

Figure 3(a) presents an example application of fixed-
rate SHARDS, using a real-world storage block I/O
trace3. The exact MRC is constructed using the un-
sampled, full-trace PARDA baseline. Five approximate
MRCs are plotted for different fixed sampling rates,
varying R between 0.00001 and 0.1, using powers of ten.
The approximate curves for R ≥ 0.001 are nearly indis-
tinguishable from the exact MRC.

2We use P = 224, providing sufficient resolution to represent very
low sampling rates, while still avoiding integer overflow when using
64-bit arithmetic for scaling operations.

3Customer VM disk trace t04, which also appears later in Figure 5.

100 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Data structure element smax < 64K smax < 4G
hash table chain pointer 2 4
hash table entry 12 16
reference splay tree node 14 20
sample splay tree node 12 20
total per-sample size 40 60

Table 1: Fixed-size SHARDS Data Structure Sizes.
Size (in bytes) used to represent elements of key data struc-
tures, for both 16-bit and 32-bit values of smax.

3.2 Fixed-Size Implementation

With a constant memory footprint, fixed-size SHARDS
is suitable for online use in memory-constrained systems,
such as device drivers in embedded systems. To explore
such applications, we developed a new implementation,
written in C, optimized for for space efficiency.

Since all data structure sizes are known up-front,
memory is allocated only during initialization. In con-
trast, other implementations perform a large number of
dynamic allocations for individual tree nodes and hash
table entries. A single, contiguous allocation is faster,
and enables further space optimizations. For example,
if the maximum number of samples smax is bounded by
64K, “pointers” can be represented compactly as 16-bit
indices instead of ordinary 64-bit addresses.

Like PARDA, our implementation leverages Sleator’s
public-domain splay tree code [47]. In addition to using
a splay tree for computing reuse distances, we employ a
second splay tree to maintain a priority queue represent-
ing the sample set S, ordered by hash threshold value. A
conventional chained hash table maps locations to splay
tree nodes. As an additional space optimization, refer-
ences between data structures are encoded using small
indices instead of general-purpose pointers.

The combined effect of these space-saving optimiza-
tions is summarized in Table 1, which reports the per-
sample sizes for key data structures. Additional mem-
ory is needed for the output histogram; each bucket con-
sumes 12 bytes to store a count and the update thresh-
old Tbucket used for rescaling. For example, with smax =
8K, the aggregate overhead for samples is only 320 KB.
Using 10K histogram buckets, providing high resolution
for evaluating cache allocation sizes, consumes another
120 KB. Even when code size, stack space, and all other
memory usage is considered, the entire measured run-
time footprint remains smaller than 1 MB, making this
implementation practical even for extremely memory-
constrained execution environments.

Figure 3(b) presents an example application of fixed-
size SHARDS, using the same trace as Figure 3(a). Five
approximate MRCs are plotted for different fixed sample
sizes, varying smax between 128 and 32K, using factors
of four. The approximate curves for smax ≥ 2K are nearly
indistinguishable from the exact MRC.

3.3 Modeling Cache Policy
PARDA uses a simple binary trace format: a sequence of
64-bit references, with no additional metadata. Storage
I/O traces typically contain richer information for each
reference, including a timestamp, access type (read or
write), and a location represented as an offset and length.

For the experiments in this paper, we converted I/O
block traces to the simpler PARDA format, assumed a
fixed cache block size, and ignored the distinction be-
tween reads and writes. This effectively models a simple
LRU policy with fixed access granularity, where the first
access to a block is counted as a miss.

We have also developed other SHARDS implemen-
tations to simulate diverse caching policies. For exam-
ple, on a write miss to a partial cache block, a write-
through cache may first read the entire enclosing cache-
block-sized region from storage. The extra read over-
head caused by partial writes can be modeled by main-
taining separate histograms for ordinary reads and reads
induced by partial writes. Other write-through caches
manage partial writes at sub-block granularity, modeled
using known techniques [57]. In all cases, we found
hash-based spatial sampling to be extremely effective.

4 Experimental Evaluation

We conducted a series of experiments with over a hun-
dred real-world I/O traces collected from our commercial
caching analytics service for virtualized environments.
We first describe our data collection system and charac-
terize the trace files used in this paper. Next, we evaluate
the accuracy of approximate MRCs. Finally, we present
results of performance experiments that demonstrate the
space and time efficiency of our implementations.

4.1 Data Collection
Our SaaS caching analytics service is designed to collect
block I/O traces for VMware virtual disks in customer
data centers running the VMware ESXi hypervisor [60].
A user-mode application, deployed on each ESXi host,
coordinates with the standard VMware vscsiStats utility
[1] to collect complete block I/O traces for VM virtual
disks. A web-based interface allows particular virtual
disks to be selected for tracing remotely.

Compressed traces are streamed to a cloud-based
backend to perform various storage analyses, including
offline MRC construction using SHARDS. If the trace
is not needed for additional storage analysis, SHARDS
sampling could be performed locally, obviating the need
to stream full traces. Ideally, SHARDS should be inte-
grated directly with the kernel-mode hypervisor compo-
nent of vscsiStats for maximum efficiency, enabling con-
tinuous, online reuse-distance analysis.

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 101

Fixed Rate Fixed Size Adjusted Fixed Size

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●●●

●

●

●

●

●●

●●
●

●

●

●●●

●

●

●

●

●
●
●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●

●
●

●
●
●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●
●●●●

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.0001 0.001 0.01 0.1 128 256 512 1K 2K 4K 8K 16K 32K 128 512 2K 8K 32K
Sampling Rate (R) Sample Size (smax) Sample Size (smax)

Av
er

ag
e

Er
ro

r
two points at 0.27, 0.33 one point at 0.35

Figure 4: Error Analysis. Average absolute error calculated over all 124 traces for different SHARDS sampling parameters.
The fixed-rate and fixed-size results are explained in Section 4.3.2, and the adjusted fixed-size results are discussed in Section 4.3.3.

4.2 Trace Files
We use 106 week-long vscsiStats traces, collected by our
caching analytics service from virtual disks in production
customer environments. These traces represent VMware
virtual disks with sizes ranging from 8 GB to 34 TB,
with a median of 90 GB. The associated VMs are a mix
of Windows and Linux, with up to 64 GB RAM (6 GB
median) and up to 32 virtual CPUs (2 vCPUs median).

In addition, we included several publicly-available
block I/O traces from the SNIA IOTTA repository [51].
We used a dozen week-long enterprise server traces col-
lected by Microsoft Research Cambridge [37], as well
as six day-long server traces collected by FIU [31]. In
total, this gives us a diverse set of 124 real-world block
I/O traces to evaluate the accuracy and performance of
SHARDS compared to exact methods.

4.3 Accuracy
We analyze the accuracy of MRCs constructed using
SHARDS by comparing them to corresponding exact
MRCs without sampling. Differences between the ap-
proximate and exact curves are measured over a wide
range of sampling parameters. Numerous MRC plots are
displayed as visual examples of SHARDS’ accuracy.

4.3.1 Parameters
Our system supports many configuration parameters. We
specify a 16 KB cache block size, so that a cache miss
reads from primary storage in aligned, fixed-size 16 KB
units; typical storage caches in commercial virtualized
systems employ values between 4 KB and 64 KB. As dis-
cussed in Section 3.3, reads and writes are treated identi-
cally, effectively modeling a simple LRU cache policy.
By default, we specify a histogram bucket size of 4K
cache blocks, so that each bucket represents 64 MB.

Fixed-rate sampling is characterized by a single pa-
rameter, the sampling rate R, which we vary between

0.0001 and 0.1 using powers of ten. Fixed-size sampling
has two parameters: the sample set size, smax, and the ini-
tial sampling rate, R0. We vary smax using powers of two
between 128 and 32K, and use R0 = 0.1, since this rate
is sufficiently high to work well with even small traces.

4.3.2 Error Metric
To analyze the accuracy of SHARDS, we consider the
difference between each approximate MRC, constructed
using hash-based spatial sampling, and its corresponding
exact MRC, generated from a complete reference trace.
An intuitive measure of this distance, also used to quan-
tify error in related work [53, 43, 65], is the mean abso-
lute difference or error (MAE) between the approximate
and exact MRCs across several different cache sizes.
This difference is between two values in the range [0, 1],
so an absolute error of 0.01 represents 1% of that range.

The box plots4 in Figure 4 show the MAE metric for a
wide range of fixed-rate and fixed-size sampling param-
eters. For each trace, this distance is computed over all
discrete cache sizes, at 64 MB granularity (correspond-
ing to all non-zero histogram buckets).

Overall, the average error is extremely small, even
for low sampling rates and small sample sizes. Fixed-
rate sampling with R = 0.001 results in approximate
MRCs with a median MAE of less than 0.02; most ex-
hibit an MAE bounded by 0.05. The error for fixed-rate
SHARDS typically has larger variance than fixed-size
SHARDS, indicating that accuracy is better controlled
via sample count than sampling rate.

For fixed-size SHARDS with smax = 8K, the median
MAE is 0.0072, with a worst-case of 0.078. Aside from
a few outliers (13 traces), the error is bounded by 0.021.

4The top and the bottom of each box represent the first and third
quartile values of the error. The thin whiskers represents the min and
max error, excluding outliers. Outliers, represented by dots, are the
values larger than Q3 +1.5× IQR, where IQR = Q3 −Q1.

102 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%) t00 (0.38%) t01 (0.05%) t02 (0.28%) t03 (0.65%)

t04 (0.28%) t05 (1.00%) t06 (0.33%) t07 (0.98%) t08 (0.04%) t09 (0.21%) t10 (0.61%)

t11 (0.65%) t12 (0.43%) t13 (0.46%) t14 (0.38%) t15 (0.10%) t16 (1.20%) t17 (0.54%)

t18 (0.08%) t19 (0.06%) t20 (0.03%) t21 (0.09%) t22 (0.04%) t23 (0.07%) t24 (0.65%)

t25 (1.20%) t26 (0.33%) t27 (0.50%) t28 (0.57%) t29 (0.12%) t30 (0.06%) t31 (0.95%)

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0 40 80 0 500 1000 0 200 0 20 40 0 200 400 0 60 120 0 20

0 30 60 0 9 18 0 50 100 0 20 40 0 300 600 0 60 120 0 20 40

0 20 40 0 20 40 600 30 60 0 100 200 300 0 200 400 0 20 40 0 40 80

0 100 200 0 200 400 0 300 600 0 200 400 0 300 600 0 200 400 0 20 40

0 5 10 0 30 60 0 20 40 0 20 40 0 300 600 0 100 200 300 0 7 14
Cache Size (GB)

M
is

s
R

at
io

Exact (unsampled) SHARDSadj (smax=8K) SHARDS (smax=8K)

Figure 5: Example MRCs: Exact vs. Fixed-Size SHARDS. Exact and approximate MRCs for 35 representative traces.
Approximate MRCs are constructed using fixed-size SHARDS and SHARDSadj with smax = 8K. Trace names are shown for three
public MSR traces [37]; others are anonymized as t00 through t31. The effective sampling rates appear in parentheses.

4.3.3 Using Reference Estimates to Reduce Error
In cases where SHARDS exhibits non-trivial error, we
find that a coarse “vertical shift” accounts for most of the
difference, while finer features are modeled accurately.
This effect is seen in Figure 3. Recently, this observation
led us to develop SHARDSadj, a simple adjustment that
improves accuracy significantly at virtually no cost.

Spatial sampling selects a static set of blocks. If the
dynamic behavior of the sample set differs too much
from that of the complete trace, the weights of the sums
of buckets and the total count of accesses from the reuse
histogram will be off, skewing the resulting MRC. For
example, excluding too many or too few very hot blocks
biases dynamic access counts.

Ideally, the average number of repetitions per block
should be the same for both the sample set and the com-
plete trace. This happens when the actual number of
sampled references, Ns, matches the expected number,
E[Ns] = N ·R. When this does not occur, we find that it is
because the sample set contains the wrong proportion of
frequently accessed blocks. Our correction simply adds
the difference, E[Ns]−Ns, to the first histogram bucket
before computing final miss ratios.

We now consider this adjustment to be best practice.
Although there was insufficient time to update all of
our earlier experiments, SHARDSadj results appear in

Figures 4 and 5. Figure 4 reveals that the error with
SHARDSadj is significantly lower. Across all 124 traces,
this adjustment reduces the median fixed-size SHARDS
error with smax = 8K to 0.0027, and the worst-case to
0.017, factors of nearly 3× and 5×, respectively. Ex-
cluding the two outliers, MAE is bounded at 0.012. Even
with just 128 samples, the median MAE is only 0.012.

4.3.4 Example MRCs
The quantitative error measurements reveal that, for
nearly all traces, with fixed-size sampling at smax = 8K,
the miss ratios in the approximate MRCs deviate only
slightly from the corresponding exact MRCs. Although
space limitations prevent us from showing MRCs for all
of the traces described in Section 4.2, we present a large
number of small plots for this practical configuration.

Figure 5 plots 35 approximate MRCs, together with
the matching exact curves; in most cases, the curves are
nearly indistinguishable. In all cases, the location of
prominent features, such as steep descents, appear faith-
ful. Each plot is annotated with the effective dynamic
sampling rate, indicating the fraction of IOs processed,
including evicted samples. This rate reflects the amount
of processing required to construct the MRC.

SHARDSadj effectively corrects all cases with visible
error. For trace t31, the worst case over all 124 traces for
SHARDS, error is reduced from 0.078 to 0.008.

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 103

 0.0001

 0.001

 0.01

 0.1

 0 10 20 30 40 50

Sa
m

pl
in

g
R

at
e

(R
)

References (Millions)

t08
t04
t27
t25

Figure 6: Dynamic Rate Adaptation. Sampling rate R (on
log scale) for four traces over time. Each starts at R0 = 0.1, and
is lowered dynamically as more unique references are sampled.

4.3.5 Sampling Rate Adaptation
Choosing a sampling rate that achieves high accuracy
with good efficiency is challenging. The automatic rate
adaptation of fixed-size SHARDS is advantageous be-
cause it eliminates the need to specify R. Figure 6 plots
R as a function of reference count for four diverse traces:
t08, t04, t27, and t25 from Figure 5. For each, the sam-
pling rate starts at a high initial value of R0 = 0.1, and is
lowered progressively as more unique locations are en-
countered. The figure shows that SHARDS adapts au-
tomatically for each of the traces, which contain signifi-
cantly different numbers of unique references. After 50
million references, the values of R for these traces are
0.0002, 0.0016, 0.0032, and 0.0111. The total number of
samples processed, including evictions from the fixed-
size sample set S, is given by the area under each curve.

4.3.6 Discussion
Quantitative experiments confirm that, for nearly all
workloads, SHARDS yields accurate MRCs, in radically
less time and space than conventional exact algorithms.
While the accuracy achieved with high sampling rates
may not be surprising, success with very low rates, such
as R = 0.001, was unexpected. Even more extraordi-
nary is the ability to construct accurate MRCs for a broad
range of workloads, using only a small constant number
of samples, such as smax = 8K, or even smax = 256. The
constant-space and rate-adaptation properties of fixed-
size SHARDS make it our preferred approach.

Our intuition is that most workloads are composed
of a fairly small number of basic underlying processes,
each of which operates somewhat uniformly over rela-
tively large amounts of data. As a result, a small number
of representative samples is sufficient to model the main
underlying processes. Additional samples are needed to
properly capture the relative weights of these processes.
Interestingly, the number of samples required to obtain
accurate results for a given workload may be indicative

of its underlying dimensionality or intrinsic complexity.
Many statistical methods exhibit sampling error in-

versely proportional to
√

n, where n is the sample size.
Our data is consistent; regressing the average absolute
error for each smax value shown in Figure 4 against
1/
√

smax resulted in a high correlation coefficient of r2 =
0.97. This explains the observed diminishing accuracy
improvements with increasing smax.

4.4 Performance
We conducted performance experiments in a VMware
virtual machine, using a 64-bit Ubuntu 12.04 guest run-
ning Linux kernel version 3.2.0. The VM was config-
ured with 64 GB RAM, and 8 virtual cores, and executed
on an under-committed physical host running VMware
ESXi 5.5, configured with 128 GB RAM and 32 AMD
Opteron x86-64 cores running at 2 GHz.

To quantify the performance advantages of SHARDS
over exact MRC construction, we use a modern high-
performance reuse-distance algorithm from the open-
source PARDA implementation [39, 38] as our baseline.
Although the main innovation of PARDA is a parallel
reuse distance algorithm, we use the same sequential
“classical tree-based stack distance” baseline as in their
paper. The PARDA parallelization technique would also
result in further performance gains for SHARDS.

4.4.1 Space
To enable a fair comparison of memory consumption
with SHARDS, we implemented minor extensions to
PARDA, adding command-line options to specify the
number of output histogram buckets and the histogram
bucket width.5 We also added code to both PARDA and
SHARDS to obtain accurate runtime memory usage6.

All experiments were run over the full set of traces
described in Section 4.2. Each run was configured with
10 thousand histogram buckets, each 64 MB wide (4K
cache blocks of size 16 KB), resulting in an MRC for
cache allocations up to 640 GB.

Sequential PARDA serves as a baseline, representing
an efficient, exact MRC construction algorithm without
sampling. Fixed-rate SHARDS, implemented via the
simple code modifications described in Section 3.1, is
configured with R= 0.01 and R= 0.001. Finally, the new
space-efficient fixed-size SHARDS implementation, pre-
sented in Section 3.2, is run with smax = 8K and R0 = 0.1.

Figure 7 shows the memory usage for each algorithm
over the full set of traces, ordered by baseline memory
consumption. The drastic reductions with SHARDS re-
quired the use of a log scale. As expected, for traces

5By default, PARDA is configured with hard-coded values – 1M
buckets, each a single cache block wide.

6We obtain the peak resident set size directly from the Linux
procfs node /proc/<pid>/status immediately before terminating;
the VmHWM line reports the “high water mark” [32].

104 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

M
em

or
y

U
sa

ge
 (M

B
)

Trace Number

 Baseline (unsampled)
 SHARDS R = 0.010
 SHARDS R = 0.001
 SHARDS Smax = 8K

Figure 7: Memory Usage. Measured memory consumption
(in MB, log scale) for unsampled baseline, fixed-rate SHARDS
(R = 0.01, 0.001), and fixed-size SHARDS (smax = 8K).

with large numbers of unique references, the memory re-
quired for fixed-rate SHARDS is approximately R times
as big as the baseline. With much smaller traces, fixed
overheads dominate. For fixed-size SHARDS, the run-
time footprint remained approximately 1 MB for all runs,
ranging from 964 KB to 1,044 KB, with an average of
974 KB, yielding a savings of up to 10,800× for large
traces and a median of 185× across all traces.

4.4.2 Time
Figure 8 plots the CPU usage measured7 for the same
runs described above, ordered by baseline CPU con-
sumption. The significant processing time reductions
with SHARDS prompted the use of a log scale.

Fixed-rate SHARDS with R= 0.01 results in speedups
over the baseline ranging from 29× to 449×, with a me-
dian of 75×. For R = 0.001, the improvement ranges
from 41× to 1,029×, with a median of 128×. For
short traces with relatively small numbers of unique ref-
erences, fixed overheads dominate, limiting speedups to
values lower than implied by R.

Fixed-size SHARDS with smax = 8K and R0 = 0.1 in-
curs more overhead than fixed-rate SHARDS with R =
0.01. This is due to the non-trivial work associated with
evicted samples as the sampling rate adapts dynamically,
as well as the cost of updating the sample set priority
queue. Nonetheless, fixed-size SHARDS achieves sig-
nificant speedups over the baseline, ranging from 6× to
204×, with a median of 22×. In terms of throughput, for
the top three traces ordered by CPU consumption in Fig-
ure 8, fixed-size SHARDS processes an average of 15.4
million references per second.

7For each run, CPU time was obtained by adding the user and sys-
tem time components reported by /usr/bin/time.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

C
PU

 U
sa

ge
 (s

ec
)

Trace Number

 Baseline (unsampled)
 SHARDS R = 0.010
 SHARDS R = 0.001
 SHARDS Smax = 8K

Figure 8: CPU Usage. Measured run time (in seconds, log
scale) for unsampled baseline, fixed-rate SHARDS (R = 0.01,
0.001), and fixed-size SHARDS (smax = 8K).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
Cache Size (TB)

M
is

s
R

at
io

Exact (unsampled)
SHARDS (smax=8K)

Figure 9: Mixed Workloads. Exact and approximate
MRCs for merged trace interleaving 4.3G IOs to 509M unique
blocks from 32 separate virtual disks. Fixed-size SHARDS
with smax = 8K exhibits an average absolute error of only 0.008.

4.5 MRCs for Mixed Workloads
Our VM-based traces represent single-machine work-
loads, while the IOs received by storage arrays are typi-
cally an undistinguished, blended mix of numerous inde-
pendent workloads. Figure 9 demonstrates the accuracy
of fixed-size SHARDS using a relative-time-interleaved
reference stream combining all 32 virtual disk traces
(t00. . .t31) shown in Figure 5. With smax = 8K, SHARDS
exhibits a small MAE of 0.008. The high accuracy and
extremely low overhead provide additional confidence
that continuous, online MRC construction and analysis
is finally practical for production storage arrays.

4.6 Non-LRU Replacement Policies
SHARDS constructs MRCs for a cache using an LRU
replacement policy. Significantly, the same underlying
hash-based spatial sampling approach appears promis-
ing for simulating more sophisticated policies, such as
LIRS [27], ARC [35], CAR [5], or Clock-Pro [26].

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 105

��

����

����

����

����

����

����

����

����

�� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
��
���

���������������

���������������������
�������������������
�������������������

Figure 10: Scaled-Down ARC Simulation. Exact and
approximate MRCs for VM disk trace t04. Each curve plots
100 separate ARC simulations at different cache sizes.

As with fixed-rate SHARDS, the input trace is filtered
to select blocks that satisfy a hash-based sampling con-
dition, corresponding to the sampling rate R. A series of
separate simulations is run, each using a different cache
size, which is also scaled down by R. Figure 10 presents
results for the same trace as in Figure 3, leveraging an
open-source ARC implementation [21]. For R = 0.001,
the simulated cache is only 0.1% of the desired cache
size, achieving huge reductions in space and time, while
exhibiting excellent accuracy, with an MAE of 0.01.

5 Related Work
Before the seminal paper of Mattson, Gecsei, Slutz, and
Traiger [34], studies of memory and storage systems re-
quired running separate experiments for each size of a
given level of the hierarchy. Their key insight is that
many replacement policies have an inclusion property:
given a cache C of size z, C(z)⊆C(z+1). Such policies,
referred to as stack algorithms, include LRU, LFU, and
MRU.8 Mattson et al. also model set associativity, dele-
tion, no-write-allocate policies, and the handling of the
entire set of memory and storage hierarchies as a list of
such stacks. Others extended the model for caches with
write-back or subblocking policies [56, 57], variable-size
pages [58], set associativity [24, 30, 52], and modeling
groups of these behaviors in a single analysis [25, 59].

Because it generates models of behavior for all cache
sizes in a single pass over a trace, Mattson’s technique
has been applied widely. Application areas include the
modeling of caches [24, 30, 52]; of multicore caches
including the effects of invalidation [45, 44]; guidance
of mechanisms to apportion shared caches amongst pro-
cesses [41, 53, 18]; the scheduling of memory within an
operating system [49, 72, 4]; the sizing and management
of unified buffer caches [28]; secondary exclusive (vic-
tim I/O) caches [33], and memory caches [43]; the sizing

8Policies other than LRU require one more step: after a block is
moved to the top, the remaining blocks are reordered in a single pass.

of garbage-collected heaps [68, 67]; the impact of mem-
ory systems and caches on Java performance [29]; the
transparent borrowing of memory for low-priority com-
putation [14]; the balancing of memory across sets of
virtual machines [70, 69]; and the analysis of program
behavior and compilation for data layout [2, 11, 17].

5.1 Optimizations
Mattson’s algorithm takes O(NM) time and O(M) space
for a trace of length N containing M unique blocks.
Given its broad applicability, much effort has been spent
improving its performance in both space and time.

5.1.1 Management of LRU Stacks
Early improvements added hash tables either to detect
cold accesses or to map references to their previous en-
tries [6, 40, 56]. Bennett and Kruskal [6] used a bal-
anced tree over the trace tracking which references were
the most recent instances and keeping counts in the sub-
trees, allowing each distance to be computed in O(logN)
steps. Olken [40] improved on this by tracking only the
most recent references in the tree, further reducing the
distance computation to O(logM). Use of a balanced
tree is now common for computing distances. By manag-
ing the stack of references with a doubly-linked or chun-
ked list and mapping references to nodes in the stack, the
algorithm takes O(N logM) time and O(M) space.

Another key advance, by Niu et al., is processing a
trace in parallel [39]. Their technique, PARDA, achieves
impressive speedups by splitting a trace into P partitions,
processing each independently, and patching up missing
information between partitions.

5.1.2 Compression and Grouping of References
Much effort has been spent reducing trace sizes [50, 36].
Smith [50] compressed virtual-memory traces by ignor-
ing references whose reuse distance is less than some K,
and periodically scanning access-bits for pages.

Another optimization is to coarsen the distances that
are tracked [52, 72, 68, 67, 4, 70, 43]. Kim et al. [30]
track groups of references in the stack where the sizes of
the groups are powers of two. By tracking the boundary
of each group of references, updates to the LRU stack
simply adjust the distances for the pages pushed across
these boundaries. This can reduce costs of tracking ac-
cesses to O(G) where G is the number of groups tracked.
Recently, Saemundsson et al. [43] grouped references
into variable-sized buckets. Their ROUNDER aging al-
gorithm with 128 buckets yields MAEs up to 0.04 with
a median MAE of 0.006 for partial MRCs [42], but the
space complexity remains O(M). Zhao et al. [70] re-
port an error rate of 10% for their level of coarseness, 32
pages. None of the others report error rates.

Ding and Zhong [17] apply clustering in the context of
the splay tree they use to track reuse-distances for pro-

106 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

gram analysis. By dynamically compressing the tree,
they bound the overall size and cost of their analysis,
achieving a time bound of O(N log logM) and a space
bound of O(logM). The relative error is bounded by how
the nodes in the tree are merged and compressed and, so,
factors in as the base of the log . For an error of 50%, the
base is 2; for smaller ones, the base quickly approaches
1. For their purpose, they can tolerate large error bounds.

5.1.3 Temporal Sampling
Temporal sampling — complementary to SHARDS —
reduces reference-tracking costs by only doing so some
of the time. Berg et al. [7, 8] sample every Nth refer-
ence (1 in every 10K) to derive MRCs for caches. Bryan
and Conte’s cluster sampling [10], RapidMRC [53], and
work on low-cost tracking for VMs [69], by contrast, di-
vide the execution into periods in which references are
either sampled or are not. They also tackle how to de-
tect phase changes that require regeneration of the reuse-
distances. RapidMRC reports a mean average error rate
of 1.02 misses per thousand instructions (MPKI) with a
maximum of 6.57 MPKI observed. Zhao et al. [69] re-
port mean relative errors of 3.9% to 12.6%. These errors
are significantly larger than what SHARDS achieves.

Use of sampling periods allows for accurate measure-
ments of reuse distances within a sample period. How-
ever, Zhong and Chang [71] and Schuff et al. [45, 44] ob-
serve that naively sampling every Nth reference as Berg
et al. do or using simple sampling phases causes a bias
against the tracking of longer reuse distances. Both ef-
forts address this bias by sampling references during a
sampling period and then following their next accesses
across subsequent sampling and non-sampling phases.

5.1.4 Spatial and Content-Based Sampling
A challenge when sampling references is that reuse-
distance is a recurrent behavior. One solution is to extract
a sample from the trace based on an identifying charac-
teristic of its references. Spatial sampling uses addresses
to select a sample set. Content-based sampling does so
by using data contents. Both techniques can capture all
events for a set of references, even those that occur rarely.

Many analyses for set-associative caches have used
set-sampling [23, 41, 46]. For example, UMON-
DSS [41] reduces the cost of collecting reuse-distances
by sampling the behavior of a subset of the sets in a pro-
cessor cache. Kessler et al. [23] compare temporal sam-
pling, set-sampling and constant-bit sampling of refer-
ences and find that the last technique is most useful when
studying set-associative caches of different dimensions.

Many techniques targeting hardware implementations
use grouping or spatial sampling to constrain their use of
space [72, 41, 4, 59, 46]. However, these tend to focus on
narrow problems such as limited set associativity [41] or
limited cache size ranges [4] for each MRC. Like these

approaches, SHARDS reduces and bounds space use, but
unlike them, it models the full range of cache sizes. In
addition, these techniques do not report error rates.

Inspired by processor hardware for cache sampling,
Waldspurger et al. propose constructing an MRC by sam-
pling a fixed set of pages from the guest-physical mem-
ory of a VM [62]. Unfortunately, practical sampling re-
quires using small (4 KB) pages, increasing the overhead
of memory virtualization [9]. Choosing sampled loca-
tions up-front is also inefficient, especially for workloads
with large, sparse address spaces. In contrast, SHARDS
does not require any information about the address space.

Xie et al. address a different problem: estimation of
duplication among blocks in a storage system [66]. Their
system hashes the contents of blocks producing finger-
prints. These are partitioned into sets with one set cho-
sen as the sample. Their model has error proportional to
the sample-set size. This property is used to dynamically
repartition the sample so that the sample size is bounded.
Like Xie et al., the SHARDS sampling rate can be ad-
justed to ensure an upper bound on the space used. But,
how the sample set is chosen, how the sampling rate is
adjusted, and how the sampling ratio is used to adjust the
summary information are different. Most importantly,
where their work looks at individual blocks’ hash values
and how these collide, our technique accurately captures
the relationship between pairs of accesses to the blocks.

5.2 Analytical Models
Many analytical models have been proposed to approx-
imate MRCs with reduced effort. By constraining the
block replacement policy, Tay and Zou [55] derive a uni-
versal equation that models cache behavior from a small
set of sampled data points. He et al. propose modeling
MRCs as fractals and claim error rates of 7-10% in many
cases with low overhead [22]. Berg et al. [7, 8, 19, 18]
use a closed-form equation of the miss rate. Through a
sequence of sampling, deriving local miss rates and com-
bining these separate curves, they model caches with ran-
dom or LRU replacement. Others model cache behavior
by tracking hardware performance counters [15, 63, 46].

Unlike the analytical approaches, SHARDS estimates
the MRC directly from the sampled trace. We have
shown that SHARDS can be implemented using con-
stant space and with high accuracy. Where the error of
SHARDS is small, the analytic techniques report errors
of a few percent to 50% with some outliers at 100-200%.
Berg et al. simply offer graphs for comparison.

5.3 Counter Stacks
Mattson et al. track distances as counts of unique refer-
ences between reuses. Wires et al. extend this in three
ways in their recent MRC approximation work, using a
counter stack [65].

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 107

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3
Cache Size (TB)

M
is

s
R

at
io

Exact (unsampled)
SHARDSadj (smax=8K)
SHARDS (smax=8K)

Figure 11: Merged MSR Trace. Exact, SHARDS and
SHARDSadj MRCs for the merged “master” MSR trace used
in the Counter Stacks evaluation [65], with smax = 8K.

First, the counts of repetitions, themselves, can be
computed by comparing changes in the number of unique
references seen from different starting points in the
stream. The sequence of locations observed by a newer
counter is a proper suffix of the sequence recorded by an
older one. So, if the newer counter increases but the older
does not, then the older location must have repeated, and
its reuse-distance is the older counter’s value.

Second, the repetitions and reuse-distances can be ap-
proximated efficiently using a bounded set of counters.
Instead of starting a new counter with every reference,
one may downsample the set of counters, creating and
tracking a new one periodically. The set can be further
pruned since, over time, adjacent counters converge as
they observe the same set of elements. Using probabilis-
tic counters based on the HyperLogLog algorithm [20]
together with downsampling and pruning, the counter
stack algorithm only uses O(logM) space.

Third, columns of counts in the counter stack can be
periodically written to a checkpoint together with times-
tamps for subsequent analysis. Checkpointed counter-
stack sequences can be spliced, shifted temporally, and
combined to model the behavior of combinations of
workloads. Because the checkpoint only captures stacks
of counts at each timestamp, such modeling assumes that
different checkpoints access disjoint sets of blocks.

To provide a direct quantitative comparison with
SHARDS, we generated the same merged “master” MSR
trace used by Wires et al. [65], configured identically
with only read requests and a 4 KB cache block size.
Figure 11 shows MRCs constructed using fixed-size
SHARDS, with 48K histogram buckets of size 64 MB,
supporting cache sizes up to 3 TB. For smax = 8K, the
MAE is 0.006 with SHARDSadj (0.029 unadjusted). The
MRC is computed using only 1.3 MB of memory in
137 seconds, processing 17.6M blocks/sec. Wires et
al. report that Counter Stacks requires 80 MB of mem-
ory, and 1,034 seconds to process this trace at a rate of
2.3M blocks/sec. In this case, Counter Stacks is approx-

imately 7× slower and needs 62× as much memory as
SHARDSadj, but is more accurate, with an MAE of only
0.0025 [64]. Using smax = 32K, with 2 MB of memory
in 142 seconds, yields a comparable MAE of 0.0026.

While Counter Stacks uses O(logM) space, fixed-
size SHARDS computes MRCs in small constant space.
As a result, separate SHARDS instances can efficiently
compute multiple MRCs tracking different properties
or time-scales for a given reference stream, something
Wires et al. claim is not practical.

One advantage of Counter Stacks is that every refer-
ence affects the probabilistic counters and contributes to
the resulting MRC. By contrast, SHARDS assumes that
hashing generates a uniformly distributed set of values
for a reference stream. While an adversarial trace could
yield an inaccurate MRC, we have not encountered one.

Unlike Counter Stacks, SHARDS maintains the iden-
tity of each block in its sample set. This enables track-
ing additional information, including access frequency,
making it possible to directly implement other policies
such as LFU, LIRS [27], ARC [35], CAR [5], or Clock-
Pro [26], as discussed in Section 4.6.

6 Conclusions

We have introduced SHARDS, a new hash-based spa-
tial sampling technique for reuse-distance analysis that
computes approximate miss ratio curves accurately us-
ing only modest computational resources. The approach
is so lightweight — operating in constant space, and re-
quiring several orders of magnitude less processing than
conventional algorithms — that online MRC construc-
tion becomes practical. Furthermore, SHARDS enables
offline analysis for long traces that, due to memory con-
straints, could not be studied using exact techniques.

Our experimental evaluation of SHARDS demon-
strates its accuracy, robustness, and performance advan-
tages, over a large collection of I/O traces from real-
world production storage systems. Quantitative results
show that, for most workloads, an approximate sampled
MRC that differs only slightly from an exact MRC can be
constructed in 1 MB of memory. Performance analysis
highlights dramatic reductions in resource consumption,
up to 10,800× in memory and up to 204× in CPU.

Encouraged by progress generalizing hash-based spa-
tial sampling to model sophisticated replacement poli-
cies, such as ARC, we are exploring similar techniques
for other complex systems. We are also examining the
rich temporal dynamics of MRCs at different time scales.

Acknowledgments Thanks to the anonymous review-
ers, our shepherd Arif Merchant, Jim Kleckner, Xiaojun
Liu, Guang Yang, John Blumenthal, and Jeff Hausman
for their valuable feedback and support.

108 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

References
[1] AHMAD, I. Easy and efficient disk I/O workload characterization

in VMware ESX Server. In Proceedings of the 2007 IEEE 10th
International Symposium on Workload Characterization (Wash-
ington, DC, USA, 2007), IISWC ’07, IEEE Computer Society,
pp. 149–158.

[2] ALMÁSI, G., CAŞCAVAL, C., AND PADUA, D. A. Calculating
stack distances efficiently. SIGPLAN Not. 38, 2 supplement (June
2002), 37–43.

[3] APPLEBY, A. SMHasher and MurmurHash. https://code.

google.com/p/smhasher/.

[4] AZIMI, R., SOARES, L., STUMM, M., WALSH, T., AND
BROWN, A. D. Path: Page access tracking to improve memory
management. In Proceedings of the 6th International Symposium
on Memory Management (New York, NY, USA, 2007), ISMM
’07, ACM, pp. 31–42.

[5] BANSAL, S., AND MODHA, D. S. CAR: Clock with adaptive
replacement. In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies (Berkeley, CA, USA, 2004), FAST
’04, USENIX Association, pp. 187–200.

[6] BENNETT, B. T., AND KRUSKAL, V. J. LRU stack processing.
IBM Journal of Research and Development 19 (1975), 353–357.

[7] BERG, E., AND HAGERSTEN, E. StatCache: A Probabilistic Ap-
proach to Efficient and Accurate Data Locality Analysis. In Pro-
ceedings of the 2004 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS-2004) (Austin,
Texas, USA, Mar. 2004).

[8] BERG, E., AND HAGERSTEN, E. Fast Data-Locality Profiling
of Native Execution. In Proceedings of ACM SIGMETRICS 2005
(Banff, Canada, June 2005).

[9] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,
S. Accelerating two-dimensional page walks for virtualized sys-
tems. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2008), ASPLOS XIII, ACM,
pp. 26–35.

[10] BRYAN, P. D., AND CONTE, T. M. Combining cluster sam-
pling with single pass methods for efficient sampling regimen
design. In 25th International Conference on Computer Design,
ICCD 2007, 7-10 October 2007, Lake Tahoe, CA, USA, Proceed-
ings (2007), IEEE, pp. 472–479.

[11] CAŞCAVAL, C., AND PADUA, D. A. Estimating cache misses
and locality using stack distances. In Proceedings of the 17th
Annual International Conference on Supercomputing (New York,
NY, USA, 2003), ICS ’03, ACM, pp. 150–159.

[12] CARR, R. W., AND HENNESSY, J. L. WSCLOCK–a simple and
effective algorithm for virtual memory management. In Proceed-
ings of the Eighth ACM Symposium on Operating Systems Prin-
ciples (New York, NY, USA, 1981), SOSP ’81, ACM, pp. 87–95.

[13] CARTA, D. F. Two fast implementations of the minimal standard
random number generator. CACM 33, 1 (Jan. 1990), 87–88.

[14] CIPAR, J., CORNER, M. D., AND BERGER, E. D. Transpar-
ent contribution of memory. In Proceedings of the Annual Con-
ference on USENIX ’06 Annual Technical Conference (Berkeley,
CA, USA, 2006), ATEC ’06, USENIX Association, pp. 11–11.

[15] CONTE, T. M., HIRSCH, M. A., AND HWU, W.-M. W. Com-
bining trace sampling with single pass methods for efficient cache
simulation. IEEE Trans. Comput. 47, 6 (June 1998), 714–720.

[16] DENNING, P. J. The working set model for program behavior.
Commun. ACM 11, 5 (May 1968), 323–333.

[17] DING, C., AND ZHONG, Y. Predicting whole-program locality
through reuse distance analysis. SIGPLAN Not. 38, 5 (May 2003),
245–257.

[18] EKLOV, D., BLACK-SCHAFFER, D., AND HAGERSTEN, E. Fast
modeling of shared caches in multicore systems. In Proceedings
of the 6th International Conference on High Performance and
Embedded Architectures and Compilers (New York, NY, USA,
2011), HiPEAC ’11, ACM, pp. 147–157.

[19] EKLOV, D., AND HAGERSTEN, E. StatStack: Efficient modeling
of LRU caches. In Performance Analysis of Systems Software
(ISPASS), 2010 IEEE International Symposium on (March 2010),
pp. 55–65.

[20] FLAJOLET, P., FUSY, E., GANDOUET, O., AND MEUNIER, F.
HyperLogLog: The analysis of a near-optimal cardinality estima-
tion algorithm. In Proceedings of the 2007 International Confer-
ence on Analysis of Algorithms (AOFA ’07) (2007), pp. 127–146.

[21] GRYSKI, D. go-arc git repository. https://github.com/

dgryski/go-arc/.

[22] HE, L., YU, Z., AND JIN, H. FractalMRC: Online cache
miss rate curve prediction on commodity systems. In IPDPS’12
(2012), pp. 1341–1351.

[23] HILL, K. M., KESSLER, R. E., HILL, M. D., AND WOOD,
D. A. A comparison of trace-sampling techniques for multi-
megabyte caches. IEEE Transactions on Computers 43 (1994),
664–675.

[24] HILL, M. D., AND SMITH, A. J. Evaluating associativity in CPU
caches. IEEE Trans. Comput. 38, 12 (Dec. 1989), 1612–1630.

[25] JANAPSATYA, A., IGNJATOVIĆ, A., AND PARAMESWARAN, S.
Finding optimal L1 cache configuration for embedded systems.
In Proceedings of the 2006 Asia and South Pacific Design Au-
tomation Conference (Piscataway, NJ, USA, 2006), ASP-DAC
’06, IEEE Press, pp. 796–801.

[26] JIANG, S., CHEN, F., AND ZHANG, X. Clock-pro: An effec-
tive improvement of the clock replacement. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2005), ATEC ’05, USENIX Association,
pp. 35–35.

[27] JIANG, S., AND ZHANG, X. Lirs: An efficient low inter-
reference recency set replacement policy to improve buffer cache
performance. In Proceedings of the 2002 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Com-
puter Systems (New York, NY, USA, 2002), SIGMETRICS ’02,
ACM, pp. 31–42.

[28] KIM, J. M., CHOI, J., KIM, J., NOH, S. H., MIN, S. L., CHO,
Y., AND KIM, C. S. A low-overhead high-performance unified
buffer management scheme that exploits sequential and looping
references. In Proceedings of the 4th Symposium on Operating
System Design and Implementation – Volume 4 (Berkeley, CA,
USA, 2000), OSDI’00, USENIX Association, pp. 9–9.

[29] KIM, J.-S., AND HSU, Y. Memory system behavior of Java pro-
grams: Methodology and analysis. In Proceedings of the 2000
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (New York, NY, USA, 2000),
SIGMETRICS ’00, ACM, pp. 264–274.

[30] KIM, Y. H., HILL, M. D., AND WOOD, D. A. Implementing
stack simulation for highly-associative memories. In Proceed-
ings of the 1991 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (New York, NY, USA, 1991),
SIGMETRICS ’91, ACM, pp. 212–213.

[31] KOLLER, R., AND RANGASWAMI, R. I/O deduplication: Utiliz-
ing content similarity to improve I/O performance. Trans. Storage
6, 3 (Sept. 2010), 13:1–13:26.

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 109

[32] LINUX PROGRAMMER’S MANUAL. proc(5) Linux manual page.
http://man7.org/linux/man-pages/man5/proc.5.html.

[33] LU, P., AND SHEN, K. Multi-layer event trace analysis for paral-
lel I/O performance tuning. 2013 42nd International Conference
on Parallel Processing (2007), 12.

[34] MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER,
I. L. Evaluation techniques for storage hierarchies. IBM Syst. J.
9, 2 (June 1970), 78–117.

[35] MEGIDDO, N., AND MODHA, D. S. ARC: A self-tuning, low
overhead replacement cache. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (Berkeley, CA,
USA, 2003), FAST ’03, USENIX Association, pp. 115–130.

[36] MICHAUD, P. Online compression of cache-filtered address
traces. In Performance Analysis of Systems and Software, 2009.
ISPASS 2009. IEEE International Symposium on (April 2009),
pp. 185–194.

[37] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
off-loading: Practical power management for enterprise storage.
Trans. Storage 4, 3 (Nov. 2008), 10:1–10:23.

[38] NIU, Q. PARDA git repository. https://bitbucket.org/

niuqingpeng/file_parda/.

[39] NIU, Q., DINAN, J., LU, Q., AND SADAYAPPAN, P. PARDA: A
fast parallel reuse distance analysis algorithm. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium (Washington, DC, USA, 2012), IPDPS ’12,
IEEE Computer Society, pp. 1284–1294.

[40] OLKEN, F. Efficient methods for calculating the success function
of fixed space replacement policies. Perform. Eval. 3, 2 (1983),
153–154.

[41] QURESHI, M. K., AND PATT, Y. N. Utility-based cache par-
titioning: A low-overhead, high-performance, runtime mecha-
nism to partition shared caches. In Proceedings of the 39th An-
nual IEEE/ACM International Symposium on Microarchitecture
(Washington, DC, USA, 2006), MICRO 39, IEEE Computer So-
ciety, pp. 423–432.

[42] SAEMUNDSSON, T. Private communication, Jan 2015.

[43] SAEMUNDSSON, T., BJORNSSON, H., CHOCKLER, G., AND
VIGFUSSON, Y. Dynamic performance profiling of cloud caches.
In Proceedings of the ACM Symposium on Cloud Computing
(New York, NY, USA, 2014), SOCC ’14, ACM, pp. 28:1–28:14.

[44] SCHUFF, D. L., KULKARNI, M., AND PAI, V. S. Accelerating
multicore reuse distance analysis with sampling and paralleliza-
tion. In Proceedings of the 19th International Conference on Par-
allel Architectures and Compilation Techniques (New York, NY,
USA, 2010), PACT ’10, ACM, pp. 53–64.

[45] SCHUFF, D. L., PARSONS, B. S., AND PAI, V. S. Multicore-
aware reuse distance analysis. Tech. Rep. ECE-TR-388, Purdue
University, Sep 2009.

[46] SEN, R., AND WOOD, D. A. Reuse-based online models for
caches. In Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems
(New York, NY, USA, 2013), SIGMETRICS ’13, ACM, pp. 279–
292.

[47] SLEATOR, D. An implementation of top-down splaying with
sizes. ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/

splaying.

[48] SLEATOR, D. D., AND TARJAN, R. E. Self-adjusting binary
search trees. J. ACM 32, 3 (July 1985), 652–686.

[49] SMARAGDAKIS, Y., KAPLAN, S. F., AND WILSON, P. R. The
EELRU adaptive replacement algorithm. Perform. Eval. 53, 2
(2003), 93–123.

[50] SMITH, A. Two methods for the efficient analysis of memory
address trace data. Software Engineering, IEEE Transactions on
SE-3, 1 (Jan 1977), 94–101.

[51] SNIA. SNIA iotta repository block I/O traces. http://iotta.
snia.org/tracetypes/3.

[52] SUGUMAR, R. A., AND ABRAHAM, S. G. Efficient simulation
of caches under optimal replacement with applications to miss
characterization. In Proceedings of the 1993 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems
(New York, NY, USA, 1993), SIGMETRICS ’93, ACM, pp. 24–
35.

[53] TAM, D. K., AZIMI, R., SOARES, L. B., AND STUMM, M.
RapidMRC: Approximating L2 miss rate curves on commodity
systems for online optimizations. In Proceedings of the 14th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (New York, NY, USA,
2009), ASPLOS XIV, ACM, pp. 121–132.

[54] TANENBAUM, A. S. Modern Operating Systems, 3rd ed. Prentice
Hall Press, Upper Saddle River, NJ, USA, 2007.

[55] TAY, Y. C., AND ZOU, M. A page fault equation for modeling
the effect of memory size. Perform. Eval. 63, 2 (Feb. 2006), 99–
130.

[56] THOMPSON, J. G. Efficient Analysis of Caching Systems. PhD
thesis, EECS Department, University of California, Berkeley, Sep
1987.

[57] THOMPSON, J. G., AND SMITH, A. J. Efficient (stack) al-
gorithms for analysis of writeback and sector memories. ACM
Trans. Comput. Syst. 7, 1 (Jan. 1989), 78–117.

[58] TRAIGER, I., AND SLUTZ, D. One-pass Techniques for the
Evaluation of Memory Hierarchies. IBM research report. IBM
Research Division, 1971.

[59] VIANA, P., GORDON-ROSS, A., BARROS, E., AND VAHID, F.
A table-based method for single-pass cache optimization. In Pro-
ceedings of the 18th ACM Great Lakes Symposium on VLSI (New
York, NY, USA, 2008), GLSVLSI ’08, ACM, pp. 71–76.

[60] VMWARE, INC. VMware vSphere Hypervisor (ESXi). http:

//www.vmware.com/products/vsphere-hypervisor/

overview.html.
[61] WALDSPURGER, C. A. Memory resource management in

VMware ESX Server. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (New York, NY,
USA, 2002), OSDI ’02, ACM, pp. 181–194.

[62] WALDSPURGER, C. A., VENKATASUBRAMANIAN, R.,
GARTHWAITE, A. T., AND BASKAKOV, Y. Efficient online con-
struction of miss rate curves, Apr. 2014. U.S. Patent #8,694,728.
Filed Nov. 2010. Assigned to VMware, Inc.

[63] WEST, R., ZAROO, P., WALDSPURGER, C. A., AND ZHANG,
X. Online cache modeling for commodity multicore processors.
SIGOPS Oper. Syst. Rev. 44, 4 (Dec. 2010), 19–29.

[64] WIRES, J. Private communication, Jan 2015.
[65] WIRES, J., INGRAM, S., DRUDI, Z., HARVEY, N. J. A., AND

WARFIELD, A. Characterizing storage workloads with counter
stacks. In Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2014), OSDI’14, USENIX Association, pp. 335–349.

[66] XIE, F., CONDICT, M., AND SHETE, S. Estimating duplica-
tion by content-based sampling. In Presented as part of the 2013
USENIX Annual Technical Conference (USENIX ATC 13) (San
Jose, CA, 2013), USENIX, pp. 181–186.

[67] YANG, T., BERGER, E. D., KAPLAN, S. F., AND MOSS, J.
E. B. CRAMM: Virtual memory support for garbage-collected
applications. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2006),
OSDI ’06, USENIX Association, pp. 103–116.

110 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

[68] YANG, T., HERTZ, M., BERGER, E. D., KAPLAN, S. F., AND
MOSS, J. E. B. Automatic heap sizing: Taking real memory into
account. In Proceedings of the 4th International Symposium on
Memory Management (New York, NY, USA, 2004), ISMM ’04,
ACM, pp. 61–72.

[69] ZHAO, W., JIN, X., WANG, Z., WANG, X., LUO, Y., AND LI,
X. Low cost working set size tracking. In Proceedings of the
2011 USENIX Conference on USENIX Annual Technical Con-
ference (Berkeley, CA, USA, 2011), USENIXATC’11, USENIX
Association, pp. 17–17.

[70] ZHAO, W., AND WANG, Z. Dynamic memory balancing
for virtual machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (New York, NY, USA, 2009), VEE ’09, ACM,
pp. 21–30.

[71] ZHONG, Y., AND CHANG, W. Sampling-based program local-
ity approximation. In Proceedings of the 7th International Sym-
posium on Memory Management (New York, NY, USA, 2008),
ISMM ’08, ACM, pp. 91–100.

[72] ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A.,
ZHOU, Y., AND KUMAR, S. Dynamic tracking of page miss ratio
curve for memory management. SIGOPS Oper. Syst. Rev. 38, 5
(Oct. 2004), 177–188.

