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ABSTRACTThis paper presents novel sampling-based techniques for col-lecting statistical pro�les of register contents, data values,and other information associated with instructions, such asmemory latencies. Values of interest are sampled in responseto periodic interrupts. The resulting value pro�les can beanalyzed by programmers and optimizers to improve theperformance of production uniprocessor and multiprocessorsystems.Our value sampling system extends the DCPI continuouspro�ling infrastructure, and inherits many of its desirableproperties: our value pro�ler has low overhead (approxi-mately 10% slowdown); it pro�les all the code in the system,including the operating system kernel; and it operates trans-parently, without requiring any modi�cations to the pro�ledcode.
1. INTRODUCTIONHardware-based value prediction mechanisms were origi-nally proposed by Lipasti and Shen [13] to reduce pipelinedelays for long-latency operations. Simulations indicateda surprising amount of locality in the values computed byinstructions, allowing some result values to be predicted ac-curately based on prior executions of the same instruction.Software-based value pro�ling was �rst investigated byCalder, Feller and Eustace [4, 5, 9]. A value pro�ler recordsvalues generated by the instructions in a program, and main-tains statistics about the observed values. For example, avalue pro�ler might report that, 53% of the time, the in-struction at PC 0x2468 generates the result value 0, and therest of the time its result value is 1.�Current a�liation: deCODE GeneticsyCurrent a�liation: AltaVista CompanyzCurrent a�liation: VMware, Inc.xCurrent a�liation: SiByte, Inc.{Current a�liation: Akamai Technologies, Inc.
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There are several possible approaches to implementing avalue pro�ler. A binary-rewriting tool can be used to instru-ment a program, adding code to capture the results gener-ated by instructions; Calder et al. used atom [16] to in-strument binaries. Alternatively, a machine simulator oremulator can be modi�ed to record values of interest duringsimulation. This was the approach used in various archi-tectural studies of value prediction. Finally, timer-basedinterrupts can be employed to periodically sample values asa program executes. We pursued this last technique, whichwe refer to as value sampling when we wish to distinguish itfrom the other approaches.We generalize the traditional notion of value pro�ling byallowing users to capture a wide variety of values associatedwith the execution of the code. For example, in addition torecording values generated by the program being pro�led, wemight also collect timing information (e.g., this load took20ns), as well as state not directly visible to the runningprogram (e.g., this load hit in the second-level cache; thephysical address accessed by this store was 0x561c).Value pro�ling has a number of practical uses. It can pro-vide data for evaluating proposed hardware features [13].Value pro�les also provide feedback that can help focus man-ual tuning or drive automated optimizations [5]. It can alsobe used in debugging, although we currently have little ex-perience with this application. Several code optimizationsare enabled when a value pro�le reveals places where valuesare invariant (or semi-invariant [4])|that is, places wheresome variable or register (almost) always contains the samevalue. Such optimizations include:� Prefetching: a value pro�le can reveal which ad-dresses are accessed, and identify absolute addressesor relative o�sets that are highly predictable.� Specialization: a value pro�le can identify commonvalues of procedure arguments, allowing signi�cantlybetter code generation. For example, at a given callsite, the log() routine may always be called with theargument 1.0, which admits a particularly fast imple-mentation. Similarly, virtual method calls in object-oriented languages can be specialized for their mostcommon receiver classes.� Speculation: a value pro�le can expose opportuni-ties for software speculation, allowing predicted valuesto be used for dependent instructions while the actualvalues resulting from long-latency operations are stillbeing computed. Such optimizations might be particu-



larly e�ective on architectures that support predicatedexecution, such as IA-64.Value pro�les can highlight the reasons why a piece of codeis performing poorly, allowing tuning e�ort to be focusedmore e�ectively. For example, by revealing load latency in-formation, a programmer might realize that a data structureis being shared between processors in an ine�cient way.Our value sampling system extends the Digital Continu-ous Pro�ling Infrastructure (DCPI) [2], which we briey re-view here. DCPI is a pro�ler based on statistical sampling,combined with a set of pro�le analysis tools. DCPI usesfrequent randomized periodic interrupts to obtain samplesacross almost all code running on the machine, includingthe operating system kernel. Each DCPI sample containsa PC and address space identi�er, and may optionally in-clude information about other events (such as cache missesor branch mispredictions) depending on the speci�c proces-sor implementation [2, 7]. A device driver aggregates sam-ples and passes them on to a user-space daemon process.The daemon uses information from the dynamic linker andthe operating system to map address space identi�ers to ob-ject �les (executable and libraries) in the �le system, andstores the samples in �les grouped according to the object�les they refer to. Analysis tools use the samples in variousways, from providing traditional CPU time pro�les of pro-cedures, to inferring the reasons for dynamic pipeline stallsat individual instructions. Careful implementation yields anoverall overhead of a few percent, despite a sampling intervalof about 64 thousand instructions.By building on DCPI, we inherit its overall structure ofa kernel device driver, a user-space daemon, and analysistools that access pro�les via the �le system. We also inherita number of DCPI's advantages:� E�ciency: Periodic sampling can have dramaticallyless overhead than value pro�ling schemes based onbinary modi�cation or interpretation. When we applyvalue sampling to all address spaces, we see overheadsaround 10%, using the same sampling intervals nor-mally used by DCPI. This overhead compares favor-ably with the order-of-magnitude slowdowns reportedfor value pro�ling systems based on binary instrumen-tation.� Completeness: We are able to apply value samplingto the operating system kernel, and other privilegedaddress spaces that would be di�cult to handle byother means.� Transparency: Programs are slowed down slightly,but otherwise una�ected by being pro�led. There is nodanger of unexpected interactions arising from the useof per-address-space resources (e.g., virtual addresses,or �le descriptors).Similarly, we inherit DCPI's primary disadvantage: It is asampling-based approach, and so cannot capture all valuesobserved in a run of a program. However, in practice wehave not found this to be a problem.In the following sections, we provide details of our imple-mentation, our experiences using it, and what we believe wehave learned.

2. OUR APPROACHOur value sampling system augments DCPI's organiza-tion in three key ways. First, the interrupt routine cap-tures values from the interrupted program, in addition tothe usual PC samples and event records. Second, to limitthe space needed to hold value samples, we employ furthersampling techniques described by Gibbons and Matias [12].These allow us to maintain e�ciently hotlists containing themost frequently seen values at each PC, using constant spaceper hotlist. Finally, we have developed additional analy-sis tools to process the value samples. For example, theuser can display values observed together with their associ-ated assembly-language instructions and higher-level sourcestatements. Other tools automatically �nd semi-invariantvalues in code that is being executed a signi�cant numberof times.
2.1 Gathering Value SamplesWe use the performance counters available on Alpha pro-cessors to interrupt each running CPU periodically. At eachinterrupt, we record values from the current context. Typ-ically, the sampling interval is 64 thousand instructions,though a small amount of randomization is added to avoidunwanted timing interactions.The �rst question in such a system is how to obtain datavalues from an interrupted context. Without knowledge ofthe path followed by the processor's PC just prior to theinterrupt, one cannot trivially associate the values in theregisters with particular instructions.
2.1.1 An Early AttemptOur �rst attempt at solving this problem was a \bounceback" technique that arranges for a second performancecounter interrupt to occur after a small number of instruc-tions (such as one issue block) has been executed immedi-ately after resuming the original interrupted code. Duringthe �rst \setup" interrupt, the return PC and other instruc-tions in its issue block are fetched and recorded to determinewhich registers will contain values of interest. During thesecond \bounce back" interrupt, the values of interest (reg-ister values, return address, etc.) are captured and recorded.Ensuring that exactly one issue block is executed betweenthe two interrupts proved fairly di�cult because a largenumber of kernel instructions are executed in the interruptreturn path. We were assisted by a feature of the Alpha21164 CPU, which can generate an interrupt after a speci-�ed number of cycles in user-mode. We were able to makethe delivery of this interrupt fairly predictable by evictingthe i-cache line containing the issue block of interest, andtaking the i-cache �ll time into account. Nevertheless, wewould sometimes observe that no progress had been madein user mode before the second interrupt was delivered. Insuch a case, we would increase the number of user-mode cy-cles that would trigger the \bounce back" interrupt. If toomuch progress was made, we would give up our attempt tocollect data at this interrupt|this happened on a few per-cent of interrupts. A rarer problem was that the amount ofprogress made between two interrupts was sometimes am-biguous because of tight loops in the interrupted code.Although we successfully prototyped the \bounce back"mechanism, it worked only on user-mode code and only withsome Alpha processors (the 21164 family). In the light ofthese limitations, we sought an alternative.



2.1.2 Using An InterpreterUltimately, we added a complete interpreter for the Alphainstruction set to the DCPI kernel module. The interruptroutine interprets the next several instructions, advancingthe interrupted context as though those instructions hadbeen executed directly by the processor. Though concep-tually simple, there are some practical concerns with thisapproach.First, the interpreter must be reliable and reasonably com-plete. Although the interpreter can give up if it should en-counter an instruction it cannot handle, it is important thatsuch instructions are rare or the pro�ling will have signif-icant blind spots. Thus we handle the entire instructionset, and rigorous testing was used to gain con�dence in theinterpreter.One might think that we could have run the interpreterwithout having side-e�ects on the interrupted context, andthis would relax the need for correctness in the interpreter.An error in the interpreter might produce erroneous valuepro�les, but would not a�ect the pro�led program. We dis-missed this approach because we wished to apply value sam-pling to the operating system kernel, which performs loadson device registers that may have side-e�ects.No matter how complete the interpreter, there are stillcoverage limitations. We are unable to apply it to codewhere no interrupts are permitted, such as Alpha's PALcode and certain small parts of the kernel. Some operationscannot easily be emulated by the interpreter because it isrunning at high interrupt level. In particular, the interpretergives up when it encounters any of the following:� traps, such as page faults, that cannot be handled athigh interrupt levels;� a change to the interrupt level; and� a change to the kernel stack pointer|the interpreteris using the same stack.The interpreter provides exibility not available throughthe earlier \bounce back" scheme. In particular, the in-terpreter can be modi�ed to record timing information forindividual long-running instructions such as loads; this willbe discussed in Section 3.3. Similarly, the interpreter couldrecord other system state, such as page table contents, orthe interrupt level in the interrupted context. Or it can bemodi�ed to simulate some internal state of a particular pro-cessor in order to deduce where the processor might performpoorly. Quite complex analysis can be performed in the in-terrupt routine, provided that time critical interrupts arenot masked for too long.
2.1.3 User-Mode InterpretationWe also support an alternative means for invoking the in-terpreter, which has a di�erent set of advantages and disad-vantages. Instead of running the interpreter in the interruptroutine, we are able to run it as a user-mode library in thepro�led address space, using an upcall mechanism.When the address space is created, the dynamic linkerloads a value-pro�ling shared library along with the appli-cation. The library registers the address space with the pro-�ling driver. At each pro�ling interrupt, the driver revectorsthe user-mode context to the library's user-mode trap han-dler that runs the interpreter, logs the data obtained, and

�nally returns control to the interrupted context. This issimilar to the intended use of the sigprof signal in someunix systems.The user-mode approach has di�erent practical implica-tions:� The address space is being disturbed in ways otherthan timing|a new shared library is being loaded, andnew code is being run on the user-mode thread stacks.� The interpreter does not run at high interrupt level,so there is no limit on the amount of time that can bespent in the interpreter.� Page faults encountered by the interpreter will be re-solved by the operating system in the normal way, sointerpretation will not cease at page faults.� Some values available in the kernel, such as physicaladdresses, will not be available directly to user mode.Similarly, some data may be easier to obtain in user-mode, such as data revealed from a stack trace of theinterrupted context.� The correctness of the interpreter a�ects only a singleaddress space, so in principle users could modify theinterpreter to collect specialized information.� The user-mode approach makes it straightforward toperform value sampling in interpreted languages.We expect that some users will prefer to run the value-pro�ling interpreter in user-mode, while others will want torun it in the kernel.
2.2 Data ReductionGiven a basic mechanism for capturing values, a secondproblem is that of data reduction. The number of valuesobserved at any given point in the program might be verylarge|far too large to store conveniently. Calder, Feller,and Eustace [4, 5] employed a small table to hold the mostfrequently seen values. However, their ad hoc update policyrequired tuning to get good results.We used Gibbons and Matias' techniques [12] for summa-rizing a stream of data. These techniques provide a statis-tically sound basis for keeping a list of the most-frequently-seen values in a stream of values; their main advantage overan ad hoc scheme is that no tuning is required, and they useless memory for a given result quality.We briey describe the simplest scheme for keeping trackof the top N most frequently seen values in a data stream;for more details we recommend Gibbons and Matias' paper.Conceptually, the algorithm keeps a probability p and a ta-ble C that maps each possible value v to a counter C[v]. Thealgorithm maintains the invariant that C[v]=p is an unbiasedestimate of the number of times v has been seen in the datastream. Let NZ (C) be the number of non-zero counters inC. Initially, p = 1 and 8v : C[v] = 0, so NZ (C) = 0. Thetable C has space for at most N values with non-zero coun-ters; that is, NZ (C) � N . For each v in the data stream, oneis added to counter C[v] with probability p. If that causesNZ (C) temporarily to exceed N , the following operation isrepeated until NZ (C) � N once more: For some arbitraryvalue f > 1, p is reduced to p=f , and each value instancerecorded in C is retained with probability 1=f . That is, eachnon-zero C[v] is replaced by the number of heads seen when



tossing C[v] biased coins, where the probability of heads is1=f . A typical value for f is N=(N � 1).We chose to keep track of the 16 most-frequently-seenvalues captured at each program location. That is, we runone instance of Gibbons and Matias' algorithm with N = 16and f = 16=15 for each value type captured at each programlocation.
2.3 Interesting ValuesThe value sampling system could capture many di�er-ent values associated with the interrupted context, beyondthose generated directly by the programmed instructions.We have implemented a few:� Stack context information, such as the current proce-dure's return address.� Latencies for long-running instructions, such as mem-ory accesses. This is measured when the instruction isinterpreted by surrounding the operation by reads ofa cycle counter.Other possibilities are:� Processor or hardware state, such as the current phys-ical processor or processor set, physical addresses as-sociated with memory accesses, and the processor in-terrupt priority level. Similarly, the interpreter cansimulate execution of instructions for a processor ar-chitecture or memory system that does not exist, andcapture relevant internal state.� OS or runtime system state, including various identi-�ers (current process, parent process, user, group, andcontrolling tty), privilege level (e.g., e�ective user), theset of pending or blocked unix signals, and the currentscheduling priority and policy.� Application state, such as whether or not the currentthread holds certain locks.One of the most useful values to capture in conjunctionwith other values is the return address of the current pro-cedure. This allows the value sampling system to identifyvalues that are mostly invariant by call site.To obtain the return addresses we take the simple ap-proach of logging two values: the value in the return addressregister, and the value at the top of the stack. Because ofthe conventions followed by compilers that generate Alphacode, the return address is almost always to be found in oneof these two places. Downstream analysis tools can deducewhich, if either, of the two values is valid using the stackunwinding information present in the object �le.
2.4 Customized Value ProfilingOur system can be customized in various ways. In partic-ular, a user may specify what information to capture, howto transform it into value samples that are merged into thepro�le database, and how to format values for reporting.To do this, the user writes a dynamically loadable cus-tomization module, which is loaded by DCPI's user-modedaemon. Via this \plug-in" module, users may specify whatshould be captured by the interpreter for each instructionopcode. One option is to capture nothing for particularopcodes, but usually some basic information is collected, in-cluding the PC and the 32-bit instruction code. In addition,

users may opt to record one or more of the following: contentof an explicitly named register, the instruction's operandor result, a memory operand's virtual address, and the la-tency of loads. For each instruction, the captured valuesform a value tuple. Thus, each time the interpreter runs,it generates a tuple sequence for the interpreted instructionsequence.Tuple sequences generated in the interrupt handler arelater processed by the user-mode daemon. For each se-quence, the daemon calls a routine in the customizationmodule to transform it into PC-value pairs that are mergedinto the pro�le database after data reduction. This trans-formation can be arbitrarily complex. For example, the dae-mon may transform value tuples consisting of the PC andoperand address of load and store instructions into PC-valuepairs (p; v) where v is the PC of another instruction access-ing the same address as the instruction at p. (This is theidea behind the application in Section 3.2.) Our current im-plementation maintains only one value hotlist for each PC.It may be extended to maintain hotlists for di�erent kindsof values (e.g., data address and latency of a load) or forcomposite values (e.g., address-latency pairs).We modi�ed the analysis tool dcpilist to report the mostfrequent values associated with each instruction in a for-mat speci�ed by the customization module. For example,the operands of oating-point instructions can be printed asoating-point numbers, rather than the default hexadecimalformat.We have written several customization modules, such asa module for capturing load latencies, as discussed in Sec-tion 3.3.
3. EXPERIENCEWe have not used feedback from the value sampling sys-tem to direct automatic optimizations performed by thecompiler. Nevertheless, we do have experience using it tohighlight performance problems that programmers mightthen be able to address. Below we discuss some uses weexpected, and some we did not.
3.1 Expected UsesWhen collecting register values, we expected our systemto provide information similar to that obtained from previ-ous value pro�ling systems. We had no reason to believethat the quality of the data would be signi�cantly betteror worse than that obtained from those systems, though wemight claim that our system is easier to use. We repeatedthe experiments of others only to verify that our value pro-�les agreed with prior work. We also looked at other pro-grams to demonstrate that our pro�les did give useful hintsto programmers bent on optimization. We give only a fewbrief examples below.Leveraging the ability of DCPI to pinpoint performancebottlenecks, our tools direct the programmer to places thatboth consume a signi�cant amount of time, and which con-tain semi-invariant values. We showed that these tools madeit straightforward for a programmer to rediscover specializa-tion opportunities, such as those found by Calder et al. [4]in mk88sim.We also found opportunities for specialization in the raytracer povray when working on particular test images. Anexponentiation routine was already specialized for a few in-teger exponents, but not the most common one. Adding an



extra case yielded a 20% overall speedup. Similarly, spe-cializing the routine buildsturm for degree 4 polynomialsyielded a large improvement.A smaller optimization opportunity was found in gzip,where a 2% speedup was achieved by noticing that a con-stant was being read repeatedly from a global variable.
3.2 Identifying Replay TrapsThe Alpha 21264 processor attempts to execute memoryaccess instructions as soon as possible, even if that meansexecuting them out of order (that is, in an order other thanprogram order). Part way through the processor pipeline, aload or store may exceed some resource limit, or an archi-tectural constraint on instruction ordering may be encoun-tered which prevents the immediate issue of the instruction.In this case, the 21264 performs a replay trap, which abortsthe instruction and all instructions that follow it in programorder, and replays them from the fetch stage of the pipeline.Further details about replay traps can be found in the 21264reference manual [1].Replay traps are quite expensive, and a programmer mightcare to know whether such an event is occurring in his innerloop. We have observed a few unusual programs in which thechip spends over half its time recovering from them. Morecommonly, one might expect to improve performance by afew percent by having good information about the causes ofreplay traps.Some replay traps were of particular interest to us, be-cause the chip's Pro�leMe performance counters [7] do notprovide all the information that one would wish for. Theinteresting replay trap types are:� Order: When a load issues out-of-order before a storethat accesses the same bytes, the load must be replayedto ensure that it fetches the stored bytes.� Size: When a load follows a narrower store that ac-cesses some of the same bytes, the load is replayeduntil the store has been merged with the other bytes.� Synonym: If two o�-chip memory accesses use ad-dresses with the same cache index (e.g., are congruentmodulo 32K), one is replayed to avoid displacing datain the cache needed by the other.In all these cases, a pair of memory accesses is involved.Even given one instruction of the pair, it can be di�cult toidentify the other simply by looking at the program text.For example, we have encountered an inner loop where asynonym trap was caused by a load from a global variableinteracting with a load from a stack location.Starting with the value sampling interpreter, we built amechanism called vreplay to assist in these cases. The chip'sPro�leMe hardware identi�es the PC of one of the pair ofmemory accesses as one that incurred a large number ofreplay traps. The vreplay code identi�es the likely PC ofthe other memory access, and which type of replay trap wasinvolved.The vreplay mechanism works by interpreting runs of in-structions to detect accesses that may potentially conict.Interpretation runs need to be long enough to include bothinstructions in a pair that cause a replay trap. On the 21264,the distance is bounded by the maximum number of instruc-tions in ight (80), except for traps involving two loads;loads can retire before the data is back from memory.

Without expensive simulation, there is no way for the in-terpreter to know whether a replay trap would have reallyhappened. However, combining data from the interpreterwith data from Pro�leMe samples ensures that the user'sattention is directed only to instruction pairs that are infact causing replay traps.To eliminate some false alarms where accesses potentiallyconict, the interpreter also tracks data dependencies be-tween interpreted instructions. If there is a data dependencebetween two instructions that access memory, there can beno replay trap.On Tru64 unix, the TLB shootdown mechanism uses in-terprocessor interrupts (IPIs) to remove a TLB entry fromeach TLB in multiprocessor. If a processor does not re-spond to the IPI within a time bound, the operating systemcrashes. This bound imposed a limit on the number of in-structions that our uninterruptible, kernel-mode interpretercould process, and provided additional motivation for ouruser-mode value interpreter.
3.3 Load Latency MeasurementsThe value sampling system can measure the latencies ofloads by reading a cycle counter before and after each one.Often, more than sixteen di�erent latencies are observed foreach load. To simplify the report generated, the user typ-ically assigns latencies to bins using the known times forcache hits in various parts of the memory hierarchy. We useautomatic programs to determine such interesting thresh-olds experimentally.A concern when recording load latencies is that our systemmight disturb the measurements so much as to make themworthless. We measured how much our system perturbs theprimary data cache by creating a program that repeatedlytouches each block in the cache, where a block is a <cacheline, cache set> coordinate. The program uses a separateload instruction for each block. In an ideal world withoutinterrupts, none of the these loads would get cache misses.The results are shown in Table 1.Miss rate Fraction of cache blocks0% 88%1-20% 4%21-40% 2%41-60% 2%61-80% 1%81-100% 3%Table 1: Fraction of primary cache blocks experienc-ing various miss rates due to perturbation by valuepro�ling.The key point to notice in Table 1 is that about 90%of the cache blocks are never evicted by the value pro�lingsystem, while a small number are almost always evicted.The fraction of blocks evicted from the second level cache islower due to its larger size. We expect these results couldbe improved by carefully tuning our interpreter to minimizethe number of cache blocks touched.Figure 1 is an example of a load latency value pro�le froma oating point benchmark. The vtot column is the numberof value samples for the instruction; the thld column is theprobability of each value sample being added to the hotlist;the nv column is the length of the hotlist; and the latenciescolumn is the hotlist of binned load latencies, where \D"



retdelay PC instruction vtot thld nv latencies0.0223 0x64 ldt $f17, 8(t6) 23278 1.0 3 (94.26% D) (3.58% M) (2.15% B)...0.0245 0x78 ldt $f11, 0(t2) 14559 1.0 3 (84.91% M) (15.07% D) (0.01% B)...102.2877 0x94 mult $f11,$f17,$f17 0 0.0 0Figure 1: Example of Load Latency value pro�lemeans a primary cache hit, \B" means a secondary (board-cache) hit, and \M" means a memory reference. The ret-delay column comes from Pro�leMe data and indicates theaverage number of cycles that the instruction stalled theCPU.The mult instruction is an obvious bottleneck and is suf-fering from a cache miss that consumes more than 15% of allcycles in the benchmark. Because both operands (f11 andf17) of the mult are the �rst uses of loads, the load latencypro�les are essential to tell if the �rst, second, or both loadsare missing. From the latency pro�le, it is clear that the�rst load usually hits and the second load usually goes outto memory.
3.4 Overhead MeasurementsTo assess the cost of value pro�ling, we measured howmuch it slowed down the CPU2000 benchmark suite on a500 MHz Alpha 21264 machine. DCPI interrupts were gen-erated on the average every 62K instructions. Table 2(a)shows the average (across the 12 integer benchmarks in thesuite) slowdown in various cases. AverageDCPI option Slowdown %no vprof 3.9vprof 10.7vprof with context 12.2vreplay 5.9vreplay with context 6.8(a) Overhead of various pro�ling optionsInterpret Interpret Averagelength frequency slowdown %4 1/2 10.78 1/2 14.816 1/2 22.732 1/2 40.4(b) Overhead of increasing interpret lengthInterpret Interpret Averagelength frequency slowdown %4 1/2 10.78 1/4 10.816 1/8 9.732 1/16 9.364 1/32 9.2(c) Overhead for same average number ofinterpreted instructions per interrupt (2)Table 2: Slowdown of CPU2000 integer benchmarks(in percent)

Without value pro�ling (no vprof), the overhead is lessthan 4%. With basic value pro�ling (vprof), the interrupthandler interprets 4 instructions in one out of every two in-terrupts. The slowdown is nontrivial at about 10% but stillmuch lower than that of instrumentation. This slowdownincludes the e�ect of all DCPI-related work: value and tra-ditional pro�ling, driver and daemon processing. Althoughvreplay requires more complex processing than vprof, it costsless for two reasons. First, the handler interprets 128 in-structions at a time (versus 4 for vprof) but compensates forthat high cost by doing it only once every 128 interrupts.For most instructions, the driver emits no value samples tothe daemon because there are no conicting instructions toreport, while in vprof it produces one sample for every in-terpreted instruction. For both vprof and vreplay, recordingthe return address information discussed in Section 2.3 (the\context") imposes a small extra cost as expected.Tables 2(b) and (c) illustrate how we can manage the over-head by balancing how often to run the interpreter (inter-pret frequency, indicated as once every n interrupts) and howmany instructions to interpret each time (interpret length).Table 2(b) shows the slowdown for di�erent interpret lengthswhen the interpreter runs half the time. The slowdown in-creases approximately at the rate of 1% per instruction in-terpreted. Table 2(c) shows the slowdown for di�erent casesthat all lead to the same average number of interpreted in-structions per interrupt. The overhead is roughly the samein each case but declines slightly if the interpreter is run lessoften because the per-interrupt cost is amortized over moreinstructions. Thus, we can increase the interpret length andkeep overhead acceptable by interpreting less often. Thisis important because, in order to study interaction betweeninstructions (as in vreplay), we may need to interpret a rel-atively long instruction sequence before getting any usefuldata at all.
4. RELATED WORKOur value sampling work was primarily inuenced by priorresearch on hardware mechanisms for value prediction andsoftware techniques for value pro�ling. We were also moti-vated by growing interest in static and dynamic optimizerscapable of exploiting value pro�les.Lipasti and Shen �rst introduced the idea of value pre-diction [13], proposing hardware that attempts to predictthe next result value computed by an instruction based ona cache of previous result values for the same instruction.Their studies revealed a surprising amount of temporal local-ity; nearly half of all instructions produced the same resultvalue computed during their last execution. Several sub-sequent proposals have been made for improved hardwarevalue predictors [11, 15, 14].Gabbay and Mendelson explored the use of pro�ling tech-niques to identify instructions which exhibit a high degree of



value locality [10]. They showed that hardware value mis-prediction rates could be reduced by tagging the opcodesof predictable instructions, marking them as candidates forhardware prediction. Our low-overhead value sampling tech-niques could be used to provide even more detailed informa-tion to such hardware predictors.Calder, Feller, and Eustace were the �rst to investigatesoftware-based techniques for value pro�ling [4, 5, 9]. Theyused the atom [16] binary-rewriting tool to instrument eachexecutable to be pro�led, adding code to keep track of themost frequently occurring values computed by each instruc-tion. A table of the top N values was maintained for eachinstruction, limiting storage requirements. A heuristic re-placement policy was used to maintain the top N values ap-proximately. When the table was full, the least frequentlyencountered value was evicted; half of the table was also pe-riodically cleared to avoid pathological behavior with certainvalue sequences. In contrast to this ad hoc approach, whichrequired tuning for good results, our application of the Gib-bons and Matias sampling algorithms [12] provides a soundstatistical basis for maintaining such value table hotlists.Instrumentation-based approaches also impose substantialoverhead on pro�led programs; Calder et al. reported aver-age slowdowns ranging from a factor of 3.8 to a factor of 33,depending on various parameters. Our sampling-based ap-proach imposes dramatically less overhead, enabling trans-parent value pro�ling on production systems.Deaver, Gorton, and Rubin explored the use of limitedvalue pro�le information for dynamic runtime code special-ization [8]. TheirWiggins/Redstone optimizer identi�ed hotspots using DCPI-based statistical pro�ling, and dynami-cally added instrumentation to frequently executed code tocollect path and value information. Suitable traces weredynamically specialized and optimized as the program exe-cuted. Our user-mode value-sampling interpreter is an idealmatch for such an optimizer.Another approach aimed at transparent dynamic opti-mization was developed by Bala, Duesterwald, and Banerjiafor their Dynamo system [3]. Instead of instrumentation,Dynamo relies on interpretation to observe program behav-ior without requiring modi�cations. As it interprets, Dy-namo increments counters to identify hot instruction traces.Hot traces are selected for dynamic recompilation, whichemits optimized code into a fragment cache. When the in-terpreter encounters a branch, it jumps to optimized nativecode in the fragment cache when it contains an entry forthe branch target. Dynamo resumes interpretation whenprogram execution leaves the fragment cache. Dynamo'suse of limited interpretation has much in common with ourown value sampling approach, although Dynamo does notcollect value information, and its interpreter is not triggeredby periodic interrupts.There are many examples of systems that employ tech-niques that are essentially limited forms of value pro�ling.For example, run-time systems for languages such as Self [6]examine the types in use at call sites in order to replaceindirect procedure calls with direct procedure calls and topick subroutines specialized to those types.
5. FUTURE WORKMany pro�le-driven optimizations could exploit value pro-�les. The usual example is specializing code sequences forfrequently occurring values; another example is speculatively

reducing the critical path of a high-latency computation byassuming it computes the most common values and thenchecking the assumption. On the Alpha, a simple but ef-fective optimization would be to set the hint bits used topredict the target of an indirect jump based on the mostcommon jump target.The new types of values that our system can collect en-able additional optimizations. Load latency value pro�lescould guide prefetching. The vreplay pro�les, together withPro�leMe pro�les, could be used to eliminate replay traps.Our upcall handler could allow pro�le-driven optimiza-tions to be done as the program is running, following thework of Deaver et al. [8]. Fixing jump hint bits and elimi-nating size and order replay traps are likely candidates be-cause the required code analysis is local. Such optimizationsare even more practical on a multiprocessor, where the op-timization cost is amortized over many CPUs.We see some bias in the distribution of interrupted PClocations despite the randomization of the interrupt period.This occurs because on modern processors the probabilityof an interrupt being delivered at a given PC depends notjust on how often the instruction at that PC is executed, butalso on other microarchitectural issues such as how often itcauses a pipeline trap. Because our interpretation runs be-gin at the interrupted PC location, the distribution of valuesamples inherits this bias. For example, the loads in Fig-ure 1 have signi�cantly di�erent numbers of value samples,despite being from the same basic block. We believe that wecould eliminate this bias by interpreting a random numberof instructions before sampling values.
6. CONCLUSIONWe have presented a promising system for value sampling.We believe that it makes it more convenient to collect valuepro�les than previous approaches. We have also experi-mented with new types of values that can be collected. Inthe remainder of this section we discuss what we felt wentwell or badly in our design.The interpreter was a success. Our fears that it mightbe di�cult to make it su�ciently reliable proved ground-less. This contrasts with the \bounce-back" technique thatwe used before we introduced the interpreter. Although\bounce-back" involved much less code than the interpreter,it was tied to a particular hardware type and harder to im-plement correctly.Some issues remain with the interpreter. The main oneis that, when using the interpreter at interrupt level to di-agnose replay traps, long interpretation runs can cause theoperating system to crash, as described in Section 3.2. Theuse of user-space upcalls may be the answer to this prob-lem. A minor irritation is that there are a few things thatwe cannot interpret, such as instructions that cause oper-ating system traps, and instructions that modify the kernelstack pointer.Gibbons and Matias' algorithm for maintaining hotlistssimpli�ed things. Employing a well-founded algorithm savedtime that we might otherwise have spent in tuning and ex-perimenting with more ad hoc approaches.Our use of user-level upcalls for pro�ling shows promise,but we need more experience with it. We have already foundthat upcalls interact in interesting ways with unix signalhandlers and exceptions. At present, we see no insurmount-able problems.
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